電動汽車熱冷負荷計算
Ⅰ 冷負荷怎麼算
冷負荷計算
通過牆體、天棚的得熱量形成的冷負荷,可按下式計算:
CLQτ=KF⊿tτ-ε W 式中 K——圍護結構傳熱系數,W/m2•K; F——牆體的面積,m2; β——衰減系數;
ν——圍護結構外側綜合溫度的波幅與內表面溫度波幅的比值為該牆體的傳熱衰減度;
τ——計算時間,h;
ε——圍護結構表面受到周期為24小時諧性溫度波作用,溫度波傳到內表面的時間延遲,h;
τ-ε——溫度波的作用時間,即溫度波作用於圍護結構內表面的時間,h; ⊿tε-τ——作用時刻下,圍護結構的冷負荷計算溫差,簡稱負荷溫差。
Ⅱ 熱負荷的計算公式
當內能、動能、勢能的變化量可以忽略且無軸功時,輸入系統的熱量與離開系統的熱量應平衡,由此可得出傳熱設備的熱量平衡方程式為:
Q1+Q2+Q3=Q4+Q5+Q6
式中Q1—物料帶入設備的熱量,kJ;Q2—加熱劑或冷卻劑傳給設備及所處理物料的熱量,kJ;Q3—過程的熱效應,kJ;Q4—物料帶出設備的熱量,kJ;Q5—加熱或冷卻設備所消耗的熱量或冷量,kJ;Q6—設備向環境散失的熱量,kJ。
在上式時,應注意除Q1和Q4外,其它Q值都有正負兩種情況。例如,當反應放熱時,Q3取「+」號;反之,當反應吸熱時,Q3取「?」號,這與熱力學中的規定正好相反。
由式(5-1)可求出Q2,即設備的熱負荷。若Q2為正值,表明需要向設備及所處理的物料提供熱量,即需要加熱;反之,則表明需要從設備及所處理的物料移走熱量,即需要冷卻。此外,對於間歇操作,由於不同時間段內的操作情況可能不同,因此,應按不同的時間段分別計算Q2的值,並取其最大值作為設備熱負荷的設計依據。
為求出Q2,必須求出式中其它各項熱量的值。
Ⅲ 電動汽車耗能計算公式
需要3.6KW的原動力.轉速一般1500或2300轉,不同的發電機也不同.3KW發電機額定電流6A,3KW電動機額定電流6A直接啟動電流(是額定電流的4-6倍)24-36A.減壓,
Ⅳ 電動汽車功率多少kw
交流樁功率為7KW,使用220V單項電源。
電動機在絕大部分的情況下,因發熱對於潤滑油壽命的影響更甚於加在軸承上的負載重量對機械壽命的影響。因此以潤滑油壽命推算電動機壽命,對潤滑油壽命影響最大的要因是溫度,溫度大幅地影響了壽命時間。
(4)電動汽車熱冷負荷計算擴展閱讀:
注意事項:
電動汽車的充電時機最好是在電量不低於10%,不高於80%的情況下,黃金充電時間為電量的30%-40%,同時還要注意充電時間,尤其是外面的一些充電樁,沒有充滿保護,最好充電時間不要超過10個小時,以免過沖,對電池造成傷害。
電池定期進行一次深放電也有利於活化電池,可以略微提升電池的容量。一般的方法是,充10次電,對電池進行一次完全放電。這樣做可以激活一部分電池的活性,也可以很好的保持單體電池的一致性。
Ⅳ 純電動汽車一公里用多少度電
每個車肯定是不一樣的,就像傳統車的油耗也不盡相同,目前國內主流電動車電耗在網上都可以查到,基本都在百公里15度電以上,按這個演算法,基本一公里超過0.15度,按一度電5毛算,一公里7分多,當然這是最保守的演算法,實際肯定要超過這個數。
Ⅵ 冷負荷的冷負荷計算
外牆的冷負荷計算
通過牆體、天棚的得熱量形成的冷負荷,可按下式計算:
CLQτ=KF⊿tτ-ε W
式中 K——圍護結構傳熱系數,W/m2·K;
F——牆體的面積,m2;
β——衰減系數;
ν——圍護結構外側綜合溫度的波幅與內表面溫度波幅的比值為該牆體的傳熱衰減度;
τ——計算時間,h;
ε——圍護結構表面受到周期為24小時諧性溫度波作用,溫度波傳到內表面的時間延遲,h;
τ-ε——溫度波的作用時間,即溫度波作用於圍護結構內表面的時間,h;
⊿tε-τ——作用時刻下,圍護結構的冷負荷計算溫差,簡稱負荷溫差。
窗戶的冷負荷計算
通過窗戶進入室內的得熱量有瞬變傳熱得熱和日射得熱量兩部分,日射得熱量又分成兩部分:直接透射到室內的太陽輻射熱qt和被玻璃吸收的太陽輻射熱傳向室內的熱量qα。
(a)窗戶瞬變傳熱得形成的冷負荷
本次工程窗戶為一個框二層3.0mm厚玻璃,主要計算參數K=3.5 W/m2·K。工程中用下式計算:
CLQτ=KF⊿tτ W
式中 K——窗戶傳熱系數,W/m2·K;
F——窗戶的面積,m2;
⊿tτ——計算時刻的負荷溫差,℃。
(b)窗戶日射得熱形成的冷負荷
日射得熱取決於很多因素,從太陽輻射方面來說,輻射強度、入射角均依緯度、月份、日期、時間的不同而不同。從窗戶本身來說,它隨玻璃的光學性能,是否有遮陽裝置以及窗戶結構(鋼、木窗,單、雙層玻璃)而異。此外,還與內外放熱系數有關。工程中用下式計算:
CLQj·τ= xg xd Cs Cn Jj·τ W
式中 xg——窗戶的有效面積系數;
xd——地點修正系數;
Jj·τ——計算時刻時,透過單位窗口面積的太陽總輻射熱形成的冷負荷,簡稱負荷,W/m2;
Cs——窗玻璃的遮擋系數;
Cn——窗內遮陽設施的遮陽系數。
外門的冷負荷計算
當房間送風量大於回風量而保持相當的正壓時,如形成正壓的風量大於無正壓時滲入室內的空氣量,則可不計算由於門、窗縫隙滲入空氣的熱、濕量。如正壓風量較小,則應計算一部分滲入空氣帶來的熱、濕量或提高正壓風量的數值。
(a)外門瞬變傳熱得形成的冷負荷
計算方法同窗戶瞬變傳熱得形成的冷負荷。
(b)外門日射得熱形成的冷負荷
計算方法同窗戶日射得熱形成的冷負荷,但一層大門一般有遮陽。
(c)熱風侵入形成的冷負荷
由於外門開啟而滲入的空氣量G按下式計算:
G=nVmγw kg/h
式中 Vm——外門開啟一次(包括出入各一次)的空氣滲入量(m2/人次·h),按下表3—9選用;
n——每小時的人流量(人次/h);
γw——室外空氣比重(kg/m2)。
表3—9 Vm值(m2/人次·h)
每小時通過
的人數 普通門 帶門斗的門 轉門
單扇 一扇以上 單扇 一扇以上 單扇 一扇以上
100 3.0 4.75 2.50 3.50 0.80 1.00
100~700 3.0 4.75 2.50 3.50 0.70 0.90
700~1400 3.0 4.75 2.25 3.50 0.50 0.60
1400~2100 2.75 4.0 2.25 3.25 0.30 0.30
因室外空氣進入室內而獲得的熱量,可按下式計算:
Q=G·0.24(tw-tn) kcal/h
地面的冷負荷計算
舒適性空氣調節區,夏季可不計算通過地面傳熱形成的冷負荷。工藝性空氣調節區,有外牆時,宜計算距外牆2m范圍內的地面傳熱形成的冷負荷,地面冷計算採用地帶法(同採暖)。
內牆、內窗、樓板、地面的冷負荷
內牆、內窗、樓板等圍護結構,當鄰室為非空氣調節房間時,其室溫基數大於3℃時,鄰室溫度採用平均溫度,其冷負荷按下式計算:
Q=KF(twp+⊿tls-tn) W
式中 Q——內牆或樓板的冷負荷,W;
K——內牆或樓板的傳熱系數,W/m2·℃;
F——內牆或樓板的傳熱面積,m2;
tls——鄰室計算平均溫度與夏季空氣調節室外計算日平均溫度的差值,℃。
內牆、內窗、樓板等其鄰室為空氣調節房間時,其室溫基數小於3℃時,不計算。
室內得熱冷負荷計算
(a)電子設備的冷負荷
電子設備發熱量按下式計算:
Q=1000n1n2n3N W
式中 Q——電子設備散熱量,W;
N——電子設備的安裝功率,kW;
n1——安裝系數。電子設備設計軸功率與安裝功率之比,一般可取0.7~0.9;
n2——負荷功率。電子設備小時的平均實耗功率與設計軸功率之比,根據設備運轉的實際情況而定。
n3——同時使用系數。房間內電子設備同時使用的安裝功率與總功率之比。根據工藝過程的設備使用情況而定。
對於電子計算機,國外產品一般都給出設備發熱,可按其給出的數字計算。本次設計每台計算機Qs=150W。
(b)照明設備
照明設備散熱量屬於穩定得熱,一般得熱量是不隨時間變化的。
根據照明燈具的類型和安裝方式的不同,其得熱量為:
白熾燈 Q=1000N W
熒光燈 Q=1000 n1n2N W
式中 N——照明燈具所需功率,kW;
n1——鎮流器消耗功率系數,當明裝熒光燈的鎮流器裝在空調房間內時,取n1=1.2;當暗裝熒光燈鎮流器設在頂棚內時,可取n1=1.0;
n2——燈罩隔熱系數,當熒光燈罩上部有小孔(下部為玻璃板),可利用自然通風散熱與熒光燈頂棚內時,取n2=0.5~0.6;而熒光燈罩無通風孔者,則視頂棚內通風情況,n2=0.6~0.8。
(c)人體散熱
人體散熱與性別、年齡、衣著、勞動強度及周圍環境條件等多種因素有關。人體散發的潛熱量和對流熱直接形成瞬時冷負荷,而輻射散發的熱量將會形成滯後的冷負荷。實際計算中,人體散熱可以以成年男子為基礎,成以考慮了各類人員組成比例的系數,稱群集系數。對於不同功能的建築物中的各類人員(成年男子、女子、兒童等)不同的組成進行修正,下表給出了一些建築物中的群集系數,作為參考。於是人體散熱量為:
Q=qnn′ W
式中 q——不同室溫和勞動性質時成年男子散熱量,W;
n——室內全部人數;
n′——群集系數。
(d)食物散熱量形成冷負荷
計算餐廳負荷時,食物散熱量形成的顯熱冷負荷,可按每位就餐人員9W考慮。計算過程如下:
已確定餐廳人數為200人。則Q=9×200=1800W
(e) 電動設備 當工藝設備及其電動機都放在室內,設備冷負荷為
Q=1000n1n2n3N/η W 當只有工藝設備在室內,而電動機不在室內時,設備冷負荷為
Q=1000n1n2n3N W 當工藝設備不在室內,只有電動機放在室內時,設備冷負荷為
Q=1000n1n2n3(1-η)N/η W
N——電動設備的安裝功率,KW
η——電動機效率
n1——利用系數,是電動機最大實耗功率與安裝功率之比,一般可取0.7~0.9
n2——電動機負荷系數,定義為電動機每小時平均實耗功率與機器設計時最大實耗功率之比,對精密機床可取0.15~0.40,對普通機床可取0.5左右
n3——同時使用系數,定義為室內電動機同時使用的安裝功率與總安裝功率之比,一般取0.5~0.8 濕負荷計算
(a)人體散濕量
人體散濕量應同人體散熱量一樣考慮。計算過程如下:
查資料得,成年男子散熱散濕量為:顯熱61W/人,潛熱73W/人,109g/h·人;房間人數為20人。
Q=qnn′=109×20×0.77=0.00047kg/s
(b)水面散濕量
W=β(Pq·b-Pq)F kg/s
式中 Pq·b——相應於水表面溫度下的飽和空氣的水蒸汽分壓力,Pa;
Pq——空氣中水蒸汽分壓力Pa;
F——蒸發水槽表面積,m2;
β——蒸發系數,kg/(N·s),β按下式確定:
β=(α+0.00363v)10-5;
B——標准大氣壓力,其值為101325Pa;
B′——當地實際大氣壓力,Pa;
α——周圍空氣溫度為15~30℃,不同水溫下的擴散系數,kg/(N·s);
v——水面上周圍空氣流速,m/s。
表3—11 不同水溫下的擴散系數α
水溫(℃) <30 40 50 60 70 80 90 100
α kg/(N·s) 0.0043 0.0058 0.0069 0.0077 0.0088 0.0096 0.0106 0.0125
(c)食品的散濕量
餐廳的食品的散濕量可按就餐總人數每人10g/h考慮。
以207餐廳為例,計算過程如下:
已確定餐廳人數為200人。則Q=10×200=2000g/h=0.00056kg/s
熱負荷的計算和供熱基本相同 只是採用了平均溫度的計算方法
Ⅶ 熱負荷計算方法
計算公式
當內能、動能、勢能的變化量可以忽略且無軸功時,輸入系統的熱量與離開系統的熱量應平衡,由此可得出傳熱設備的熱量平衡方程式為:
Q1+Q2+Q3=Q4+Q5+Q6
式中Q1—物料帶入設備的熱量,kJ;Q2—加熱劑或冷卻劑傳給設備及所處理物料的熱量,kJ;Q3—過程的熱效應,kJ;Q4—物料帶出設備的熱量,kJ;Q5—加熱或冷卻設備所消耗的熱量或冷量,kJ;Q6—設備向環境散失的熱量,kJ。
在上式時,應注意除Q1和Q4外,其它Q值都有正負兩種情況。例如,當反應放熱時,Q3取「+」號;反之,當反應吸熱時,Q3取「?」號,這與熱力學中的規定正好相反。
由式(5-1)可求出Q2,即設備的熱負荷。若Q2為正值,表明需要向設備及所處理的物料提供熱量,即需要加熱;反之,則表明需要從設備及所處理的物料移走熱量,即需要冷卻。此外,對於間歇操作,由於不同時間段內的操作情況可能不同,因此,應按不同的時間段分別計算Q2的值,並取其最大值作為設備熱負荷的設計依據。
為求出Q2,必須求出式中其它各項熱量的值。
Ⅷ 計算電動汽車每公里耗電量需要哪些數據
夏天和冬天不一樣,順風,逆風,路的平整度有關。
車的風阻和速度的平方成正比關系,所以速度加一倍的話,耗電量會成幾倍的增加。
蓄電池的放電率有關,放電率越高電池所能輸出的電能就越少,反之越多。速度快電流就大放電率也就大,電動車電池組生輸出的電能就少,所以行駛的路程就短。
Ⅸ 新能源汽車設計時PTC需要計算發熱量嗎怎麼選擇合適的PTC
新能源汽車設計PTC時需要計算發熱量的,主要看需要暖風的空間大小
Ⅹ 純電動汽車的空調冷熱,都是怎麼實現的呢
目前,純電動汽車空調制熱系統有兩種類型:PTC熱敏電阻加熱器和熱泵系統。不同類型的制熱系統的工作原理有很大區別。
寶馬i3暖風系統:熱泵+PTC