電動汽車電機用什麼電機好
『壹』 電動汽車一般用怎樣的電機
直流電動機
三相非同步感應電動機
永磁電動機
開關磁阻電動機
電動車對驅動電機有一定的要求。
『貳』 汽車上用什麼電機最好
電動汽車最理想的電機是伺服電機,但是價格昂貴,為了降低成本,非同步電機也是不錯的選擇,小功率的還可以使用無刷永磁電機提高效率。
『叄』 電動汽車用的電機都有什麼電機啊
現在量產的電動汽車主驅動電機主要有永磁同步電機,三相非同步電機。這兩種電機適合轉矩控制。其他部分如EPS、水泵、油泵等有用三相非同步電機和直流無刷電機的。
『肆』 電動汽車常用的電動機是哪幾種,各有什麼優缺點
電動汽車採用的是蓄電池供電的直流電動機。
其特點是:
(一)調速性能好。所謂「調速性能」,是指電動機在一定負載的條件下,根據需要,人為地改變電動機的轉速。直流電動機可以在重負載條件下,實現均勻、平滑的無級調速,而且調速范圍較寬。
(二)起動力矩大。可以均勻而經濟地實現轉速調節。因此,凡是在重負載下起動或要求均勻調節轉速的機械,例如大型可逆軋鋼機、卷揚機、電力機車、電車等,都用直流電動機拖動。
1、直流電動機的工作原理
一般了解
2、直流電動機的構造
分為兩部分:定子與轉子。記住定子與轉子都是由那幾部分構成的,注意:不要把換向極與換向器弄混淆了,記住他們兩個的作用。
定子包括:主磁極,機座,換向極,電刷裝置等。
轉子包括:電樞鐵芯,電樞繞組,換向器,軸和風扇等。
3、直流電動機的勵磁方式
直流電動機的性能與它的勵磁方式密切相關,通常直流電動機的勵磁方式有4種:直流他勵電動機、直流並勵電動機、直流串勵電動機和直流復勵電動機。掌握4種方式各自的特點:
直流他勵電動機: 勵磁繞組與電樞沒有電的聯系,勵磁電路是由另外直流電源供給的。因此勵磁電流不受電樞端電壓或電樞電流的影響。
直流並勵電動機: 並勵繞組兩端電壓就是電樞兩端電壓,但是勵磁繞組用細導線繞成,其匝數很多,因此具有較大的電阻,使得通過他的勵磁電流較小。
直流串勵電動機:勵磁繞組是和電樞串聯的,所以這種電動機內磁場隨著電樞電流的改變有顯著的變化。為了使勵磁繞組中不致引起大的損耗和電壓降,勵磁繞組的電阻越小越好,所以直流串勵電動機通常用較粗的導線繞成,他的匝數較少。
直流復勵電動機:電動機的磁通由兩個繞組內的勵磁電流產生。
『伍』 現在的電動汽車都採用什麼類型的電動機
電動國汽車的主要成本在電池、充電機、電機和控制器,以快速充電的電池和充電網路之保障,減少電池車載量,以組合電機和磁力驅動器來替代主電機和電子調速控制器,機械變速箱和離合器,以降低成本,用自主知識產權的驅動技術來取代汽車電子控制技術,免得日後受制於外國專利。
國內中低檔轎車價格日趨下降,2004年10月份國內奧托和吉利競爭推出極低價轎車,3萬元/輛以內,相比這下:電動汽車目前成本仍高居不下,究其原因是:電動汽車目前尚處於研發階段,樣車和試運行階段,根本無批量可言,這是與流水線生產燃油汽車所不能比擬的,這是現實,也是可以理解的。
同時目前各式電動汽車能示範運行的,都是在原燃油汽車的底盤、車廂之基礎上改裝而成的,即將發動機、油箱等系統全數拆下,然後裝上電動機,電池等相關配套設備就形成電動汽車,而混合動力是在原然油系統基礎上加裝一套電池、電氣驅動系統,形成了油、電混合驅動系統。那麼,電動汽車成本主要就在電池、充電機、驅動電機、控制器和電源轉換設備等產品組成,約佔到整車造價成本50—60%。
目前以純電動汽車為例,電池有採用鉛酸電池、鎳氫電池、鋰電池,電源有的採用直流電源、驅動直流電機,有的將車載直流電源經逆變器轉換成交流電三相380V,供給三相非同步電機,採用變頻設備來調速。
電池品種不同和儲電量不同,其總體造價差異很大,另外電動汽車之儲電量加大多少,使成本成倍增長,如鋰電池裝備轎車,如續行里程300km,電池成本約4萬元以上,500km以上續行里程,電池成本為8萬元以上,這種研發思路是白天行駛晚上充電,為了使續行里程不亞於燃油汽車,就構成了電池成本的居高不下。
電動汽車驅動電機不同,其成本也差異甚大,若採用直流有刷電機,車載電源可直接供給電機,使用這種電機採用晶閘管式控制器斬波方式調速。目前電動汽車用直流有刷電機已經能滿足電動汽車使用要求,但由於產量有限成本很高,品種規格不多,選擇餘地較小,晶閘管控制器原採用外國公司如義大利和美國產品,現在可以國產化,成本較高,同時關鍵元器件均採用外國公司生產和控制。
若用直流無刷電機,其必須與控制器一體製成,成本更高。以調電源脈沖寬度來調電機轉速,優點是體積小,重量輕。電機能國產化,控制器的關鍵元器件均由國外公司生產,成本降下來可能性不大,且目前這種電機與電動汽車一樣屬研發階段,形不成批量,成本高就在情理之中。
若用交流非同步電機作為電動汽車驅動電機,其優點:體積小、重量輕,國產質量不差,由於車載電源系直流電,需將電源經逆變器轉換成交流電,汽車電機電壓380V左右,功率在幾十kw不等,其逆變器功率不小,成本也不會低到哪裡去,交流電機調速由變頻方式調速,交流非同步電機採用變頻變壓控制(VVVF)和磁場定向控制(FOC)也稱矩量控制或解耦控制、變極控制。變頻控制器國產、進口都有,但關鍵元器件均為進口,因此,要降低成本也不太可能。
至於正在研發中的磁阻電機,也要由電子控制器來控制調速,其成本情況與上述相同。開關磁阻電機採用模糊滑模控制(FSMC)方法來控制電機和調速,它若沒有這種電子控制設備,電機就不能工作。
電動機的轉速越高則電樞繞且切割磁場越快,產生的反電勢越高。反而限制了電流,使轉矩降低,低轉速下卻可輸出較大轉矩。因此在阻力較大的路面或走上坡路時,由於轉矩較大,所以要消耗較大的電流,換句話說,電動機在低速運動,電動車在慢速行駛時,電流輸出並不小,只是電壓降低了。
電動機要調速度,就得通過改變電壓來實現,這是電動機調速的理論基礎。而將車載電源之電壓降低至電機調速之低電壓,將有限的電源消耗在頻繁的調速中,是一種浪費。
電機最高效率在額定轉速那裡,往下調速就效率低,轉速越低效率越低。而為了提高車載電源的利用率,應該希望電機的效率越高越好。
電動汽車驅動電機,要求啟動、爬坡時高轉矩,高速行駛時要求低轉矩,要求變速范圍大。直流有刷電機、直流永磁無刷電機、交流非同步電機、磁阻電機是目前電動汽車驅動電機的主流技術和首選機型,它們有一個不可避開的設備,電子控制設備和微機控制技術,這個構成了電動汽車成本的主要部份之一和技術障礙,目前核心技術掌握在外國人手中,我們要就得向他們購買,將來中國各種電動汽車推開形成產業,或有朝一日中國能出口電動汽車時,國外控制器核心技術擁有者會象彩電、DVD一樣,來收專利費,這是後話,但這種可能並非天方夜譚。
若要降低電動汽車總成本,只能在電池、充電器、電機、控制器產品方面作文章。要用技術創新的思路來改變這一局面,發明出一種新的電機驅動,變速機構系統和電池充電模式,走自己特色的路。
如果在電動汽車上電池裝的少,在確保電機正常運作,同時在各種路況運行條件下,不損害電池壽命的前提下,以一次充電續行里程200km左右,也即所載電池供電機,整車工作2—3小時,然後在快速充電機上補充電源,這就要求電池能以1C以上或2C--3C電流充電。另外電動車應在一個城市一個區域行駛,在它們的行駛范圍內有公用充電站,在極短時間內如10分種、15分鍾將電池組充至80%--90%,能行使100km--150km。電動汽車本身配有車載充電器,回家在車庫里慢充電,車載電池裝得少,整車質量就小,能有效增載入荷,造價也低。
電動機應採用直流有刷電機,稍作改進後直接驅動,不用逆變電源,削去這一塊成本,電機調速問題不採用暫波,調脈,調頻率的通常做法,改用調內燃機油門的原理,車用驅動電機之功率,分解成若干個小功率電機,組成一個組合電機,該組合內的各個電機功率相等或功率大小不一,在啟動、加速、輕載、重載、爬坡、怠速時分別啟動或關閉其中幾個電機,使之工作或停機。即駕駛員根據電動汽車實際運行狀況來調節電機工作的數量和總功率,而工作的電機始終以額定轉速恆定輸出轉速和扭矩,而不必對其進行調速,這樣就不再用電子控制器和調速器。
多電機驅動能減小整車主電機的電流和額定值功率,減小單個電機驅動時所需大電流對車載電池的沖擊,這點對已使用較長時間壽命的電池和車載電池組內所儲電量不多時的電池情況猶為重要和關鍵,能延長電池使用壽命。
目前在研製的電動汽車,其驅動機構中,有的仍保留原汽車中的機械變速器和離合器,這主要是電動機調速控制的不是很理想所致,因而保留了它。應取消原機械變速箱和離合器,採用磁性驅動器,來無極變速,通過調節主動和從動器件的間距,就能達到變速箱離合器的作用,與組合電機二者配合,就成了一個有機整體的電機驅動系統。磁力驅動器調速可和單個大電機進行匹配也可與組合電機之幾個小功率電機進行匹配,在這種匹配中,電機始終以額定轉速在工作,由於磁力驅動器的調節,電動車的車速快、慢有變化,這時電機的負載,轉矩就跟著變化,即整車需要大的轉矩,電機或電機組就輸出大轉矩,反之就輸出小轉矩,電機的轉矩變化隨整車之需要而變化,電機的功耗也隨之變化,這樣就做到整車需多少轉矩,電機就輸出多少轉矩,就耗多少電,既節能又不必通過復雜的電機控制系統。電機運行時,轉速越高,轉矩越小,轉速越低,轉矩越大,這就是載重負載大,或爬坡時要降低轉速加大轉矩,而和電動機正好達到了統一。中國稀土永磁材料在世界上 居優勢地位,應著力開發應用,而用直流稀土永磁有刷電機與磁力驅動器,就完全利用稀土永磁材料,完全具有中國自主知識產權,整個成本也大大低於「電機、控制器、機械變速箱、離合器」的總成本。而且將來也不受制於外國公司。
電動汽車包括純電動汽車、混合動力汽車、燃料電池汽車,它們都以電動機來驅動行駛的,若組合電機和磁力驅動器能應用到這些車上,對這種車型的總成本會降低很多,這樣就容易為市場所接受,與內燃機汽車相比,更具競爭力。因此組合電機和磁力驅動器的研發,將對電動汽車研發,產業化起到推動作用,具積極意義。
如果用價格甚低的汽車如奧托、吉利,3萬元/輛,撤除發動機、離合器、變速箱、油箱、供油系統等,那麼扣去這一塊成本約5000—6000元左右,那麼整車成本約2.5萬元/輛左右,然後配上電池組,車載充電機、電機、磁力驅動器等,其總成本在3萬—3.5萬元套,那麼經濟型家用或出租用電動轎車,其成本在6—7萬元左右是可以實現的。這種轎車是有競爭力的,而且電費經測算約10元/100km,每100km耗電18kw/h左右。一般普通轎車每百公里耗油為8升/100km,按2004年10月份油價3.63元/升計,約30元/100kw的耗油費。前者是後者的1/3,如果2005年實施燃油稅,那麼油耗用將進一步增加,而電動汽車目前應屬扶持對象,而且電費2005年變化不會太大,其耗電費也不會增加,兩者相較,電動汽車在運行費用方面是有競爭力的。
電動汽車驅動電機性能比較
摘要:驅動電機系統是電動汽車的關鍵技術之一。本文對電動汽車的幾種典型驅動系統進行了定性分析,對它們的性能進行了比較,指出了它們各自的優缺點。
關鍵詞:電動汽車;驅動電機;分析;性能比較
人類與環境共存和全球經濟的可持續發展使人們迫切希望尋求到一種低排放和有效利用資源的交通工具,使用電動汽車無疑是一種很有希望的方案。
現代電動汽車是融合了電力、電子、機械控制、材料科學以及化工技術等多種高新技術的綜合產品。整體的運行性能、經濟性等首先取決於電池系統和電機驅動控制系統。電動汽車的電機驅動系統一般由4個主要部分組成,即控制器。功率變換器、電動機及感測器。目前電動汽車中使用的電動機一般有直流電動機、感應電動機、開關磁阻電動機以及永磁無刷電動機等。
1 電動汽車對電動機的基本要求
電動汽車的運行,與一般的工業應用不同,非常復雜。因此,對驅動系統的要求是很高的。
1.1 電動汽車用電動機應具有瞬時功率大,過載能力強、過載系數應為3~4),加速性能好,使用壽命長的特點。
1.2 電動汽車用電動機應具有寬廣的調速范圍,包括恆轉矩區和恆功率區。在恆轉矩區,要求低速運行時具有大轉矩,以滿足起動和爬坡的要求;在恆功率區,要求低轉矩時具有高的速度,以滿足汽車在平坦的路面能夠高速行駛的要求。
1.3 電動汽車用電動機應能夠在汽車減速時實現再生制動,將能量回收並反饋回蓄電池,使得電動汽車具有最佳能量的利用率,這在內燃機汽車上是不能實現的。
1.4 電動汽車用電動機應在整個運行范圍內,具有高的效率,以提高1次充電的續駛里程。
另外還要求電動汽車用電動機可靠性好,能夠在較惡劣的環境下長期工作,結構簡單適應大批量生產,運行時雜訊低,使用維修方便,價格便宜等[1-2]。
2 電動汽車用電動機的種類和控制方法
2.1 直流電動機
有刷直流電動機的主要優點是控制簡單、技術成熟。具有交流電機不可比擬的優良控制特性。在早期開發的電動汽車上多採用直流電動機,即使到現在,還有一些電動汽車上仍使用直流電動機來驅動。但由於存在電刷和機械換向器,不但限制了電機過載能力與速度的進一步提高,而且如果長時間運行,勢必要經常維護和更換電刷和換向器。另外,由於損耗存在於轉子上,使得散熱困難,限制了電機轉矩質量比的進一步提高。鑒於直流電動機存在以上缺陷,在新研製的電動汽車上已基本不採用直流電動機[3]。
2.2 交流三相感應電動機
2.2.1 交流三相感應電動機的基本性能
交流三相感應電動機是應用得最廣泛的電動機。其定子和轉子採用硅鋼片疊壓而定子之間沒有相互接觸的滑環、換向器等部件。結構簡單,運行可靠,經久耐用。交流感應電動機的功率覆蓋面很寬廣,轉速達到12000~15000r/min。可採用空氣冷卻或液體冷卻方式,冷卻自由度高。對環境的適應性好,井能夠實現再生反饋制動。與同樣功率的直流電動機相比較,效率較高,質量減輕一半左右,價格便宜,維修方便。
2.2.2 交流感應電動機的控制系統
由於交流三相感應電動機不能直接使用蓄電池供給的直流電,另外交流三相感應電動機具有非線性輸出特性。因此,在採用交流三相感應電動機的電動汽車上,需要應用逆變器中的功率半導體器件,將直流電變為頻卒和幅值都可以調節的交流電來實現對交流三相電動機的控制。主要有v/f控製法、轉差頻率控製法。
用矢量控製法,對交流三相感應電動機的勵磁繞組交流電的頻率和輸入交流三相感應電動機的端調控制,控制交流三相感應電動機旋轉磁場的磁通量和轉矩,實現改變交流三相感應電動機轉速和輸出轉矩,來滿足負載變化特性的要求,並能夠獲得最高效率,從而使得交流三相感應電動機能夠在電動汽車上得到廣泛應用。
2.2.3 交流三相感應電動機的不足
交流三相感應電動機的耗電量較大,轉子容易發熱,在高速運轉時需要保證對交流三相感應電動機的冷卻,否則會損壞電動機。交流三相感應電動機的功率因數較低,使得變頻變壓裝置的輸入功率因數也較低,因此需要採用大容量的變頻變壓裝置。交流三相感應電動機的控制系統的造價遠遠高於交流三相感應電動機本身,增加了電動汽車的成本[2-4]。另外,交流三相感應電動機的調速性也較差。
2.3 永磁無刷直流電動機
2.3.1永磁無刷直流電動機的基本性能
永磁無刷直流電動機是一種高性能的電動機。它的最大特點就是具有直流電動機的外特性而沒有刷組成的機械接觸結構。加之,它採用永磁體轉子,沒有勵磁損耗:發熱的電樞繞組又裝在外面的定子上,散熱容易,因此,永磁無刷直流電動機沒有換向火花,沒有無線電干擾,壽命長,運行可靠,維修簡便。此外,它的轉速不受機械換向的限制,如果採用空氣軸承或磁懸浮軸承,可以在每分鍾高達幾十萬轉運行。永磁無刷直流電動機機系統相比具有更高的能量密度和更高的效率,在電動汽車中有著很好的應用前景。
2.3.2 永磁無刷直流電動機的控制系統
典型的永磁無刷直流電動機是一種准解耦矢量控制系統,由於永磁體只能產生固定幅值磁場,因而永磁無刷直流電動機系統非常適合於運行在恆轉矩區域,一般採用電流滯環控制或電流反饋型SPWM法來完成。為進一步擴充轉速,永磁無刷直流電動機也可以採用弱磁控制。弱磁控制的實質是使相電流相位角超前,提供直軸去磁磁勢來削弱定子繞組中的磁鏈。
2.3.3 永磁無刷直流電動機的不足
永磁無刷直流電動機受到永磁材料工藝的影響和限制,使得永磁無刷直流電動機的功率范圍較小,最大功率僅幾十千瓦。永磁材料在受到振動、高溫和過載電流作用時,其導磁性能可能會下降或發生退磁現象,將降低永磁電動機的性能,嚴重時還會損壞電動機,在使用中必須嚴格控制,使其不發生過載。永磁無刷直流電動機在恆功率模式下,操縱復雜,需要一套復雜的控制系統,從而使得永磁無刷直流電動機的驅動系統造價很高[5-10]。
2.4 開關磁阻電動機
2.4.1 開關磁阻電動機的基本性能
開關磁阻電動機是一種新型電動機,該系統具有很多明顯的特點:它的結構比其它任何一種電動機都要簡單,在電動機的轉子上沒有滑環、繞組和永磁體等,只是在定子上有簡單的集中繞組,繞組的端部較短,沒有相間跨接線,維護修理容易。因而可靠性好,轉速可達15000 r/min。效率可達85%~93%呢,比交流感應電動機要高。損耗主要在定子,電機易於冷卻;轉子元永磁體,調速范圍寬,控制靈活,易於實現各種特殊要求的轉矩一速度特性,而且在很廣的范圍內保持高效率。更加適合電動汽車動力性能要求。
2.2.4 開關磁阻電動機的控制系統
開關磁阻電動機具有高度的非線性特性,因此,它的驅動系統較為復雜。它的控制系統包括功率變換器。
a. 功率變換器
開關磁阻電動機的勵磁繞組,無論通過正向電流或反向電流,其轉矩方向不變,期換向,每相只需要一個容量較小的功率開關管,功率變換器電路較簡單,不會出現直通故障,可靠性好,易於實現系統的軟啟動和四象限運行,具有較強的再生制動能力。成本比交流三相感應電動機的逆變器控制系統要低。
b.控制器
控制器由微處理器、數字邏輯電路等元件組成。微處理器根據駕駛員輸入的命令,同時對位置檢測器、電流檢測器所反饋的電動機轉子位置,進行分析、處理,並在瞬間做出決策,發出一系列執行命令,來控制開關磁阻電動機適應電動汽車不同條件下運行。控制器性能好壞和調節的靈活性,取決於微處理器的軟體和硬體的性能配合關系。
c.位置檢測器
開關磁阻電動機需要高精度的位置檢測器,來為控制系統提供電動機轉子的位置、轉速和電流的變化信號,並要求有較高的開關頻率以降低開關磁阻電動機的雜訊。
2.4.3 開關磁阻電動機的不足
開關磁阻電動機的控制系統比其他電動機的控制系統復雜一些,位置檢測器是開關磁阻電動機的關鍵器件,其性能對開關磁阻電動機的控制操作有重要影響。由於開關磁阻電動機為雙凸極結構,不可避免地存在轉矩波動,雜訊是開關磁阻電動機最主要的缺點。但近年來的研究表明,採用合理的設計、製造和控制技術,開關磁阻電動機的雜訊完全可以得到良好的抑制。另外,由於開關磁阻電動機輸出轉矩波動較大,功率變換器的直流電流波動也較大,所以在直流母線上需要裝置一個很大的濾波電容器[2,11-13]
3 電動汽車採用的備種驅動電動機性能比較
電動汽車在不同的歷史時期採用了不同的電動是採用了控制性能最好和成本較低的直流電動機。隨著電機技術、機械製造技術、電力電子技術和自動控制技術的不斷發展,交流電動機。永磁元刷直流電動機和開關磁阻電動機顯示出比直流電動機更加優越的性能,在電動汽車上,這些電動機逐步取代了直流電動機。表1為現代電動汽車所採用的各種電動機的基本性能比較。目前交動機、永磁電動機和開關磁阻電動機以及它們的控制裝置,成本還比較高,形成批量生產以後,這些電動機和單元控制裝置的價格會迅速降低,將能夠滿足經濟效益的要求,並使電動汽車整車價格降低[2]。
『陸』 電動汽車同步電機好還是非同步電機好
通常要了解一款車型的動力性能,首先必須知道該車搭載何種發動機,因為發動機是整輛車的心臟。那麼對於電動車來說,它的心臟便是驅動電機。而我們在查看大多數電動車的動力系統相關信息的時候,有一個名詞的出現頻率極高,那便是永磁同步電機。原因是目前國內大多數純電動車都是選擇這種電動機作為動力源。
難道現在新能源乘用車只採用永磁同步電機呢?其實不然,部分中高端純電動車會選擇採用交流非同步電機,例如特斯拉、蔚來。此外,即將在國內上市的奧迪。EQC(參數|圖片)同樣是給前後軸裝上兩台交流非同步電機。相比國內主流電動車採用的永磁同步電機,售價更貴定位更高的中高端電動車採用的非同步電機就一定更加先進嗎?
交流非同步電機的優缺點剛好與永磁同步電機相反,前者的優勢在於製造電機無需價格昂貴的永磁材料,因此成本更為低廉,而且工藝簡單、運行可靠、維修方便,能夠在復雜的工作環境中工作,也對周圍工作溫度的大幅度變化有比較強的適應能力。缺點則是在同樣的功率和扭矩下,非同步電機所需要的體積和重量要遠大於永磁同步電機,同時能耗也相對更高。
『柒』 電動汽車雙電機好還是單電機好
電動汽車雙電機好還是單電機好?我們熊以下幾個方面來具體分析:
與單純的單電機驅動不同的是,雙電機能夠有效地提高汽車的性能與續航能力,用戶體驗感也比較好。單電機系統在設計時,由於考慮到汽車需要應對爬坡以及一些復雜的路況,所選擇的電機功率往往是偏大的。而在實際的應用過程當中,很多情況下電機都處於低速運轉點,所以電機的效率比較低,大部分能量被浪費。而雙電機就不用擔心這樣的問題,在低速和高速時使用功率不同的電機,能夠大幅提高能量利用效率,比起單電機來說更加節能環保,而且汽車的續航能力也會提升不少。
在燃油車里40萬起售的高性能車,在電動車這可能只要20多萬就夠了,普通人努努力也可以擁有,這一點是單電機完全無法做到的。而雙電機的另一個好處,則是前電機負責前輪,後電機負責後輪的電動四驅系統。
『捌』 電動車的電機哪種的好
現在的主流是無刷電機,價錢會貴一點,結構復雜,操作簡單,比較好
以前就是有刷電機,價錢便宜,結構簡單,容易壞
『玖』 電動汽車採用哪種驅動電機好
在環保的大環境下,電動汽車也成為了近年來研究的熱點,電動汽車在城市交通中可以實現零排放或極低排放,在環保領域優勢巨大,各國都在努力發展電動汽車。電動汽車主要是由電機驅動系統、電池系統和整車控制系統三部分構成,其中的電機驅動系統是直接將電能轉換為機械能的部分,決定了電動汽車的性能指標。因此,對於驅動電機的選擇就尤為重要。
1電動汽車對於驅動電機的要求
目前對於電動汽車性能的評定,主要是考慮以下三個性能指標:(1)最大行駛里程(km):電動汽車在電池充滿電後的最大行駛里程;(2)加速能力(s):電動汽車從靜止加速到一定的時速所需要的最小時間;(3)最高時速(km/h):電動汽車所能達到的最高時速。
針對於電動汽車的驅動特點所設計的電機,相比於工業用電機有著特殊的性能要求:(1)電動汽車驅動電機通常要求可以頻繁的啟動/停車、加速/減速、轉矩控制的動態性能要求較高;(2)為了減少整車的重量,通常取消多級變速器,這就要求在低速或爬坡時,電機可以提供較高的轉矩,通常來說要能夠承受4-5倍的過載;(3)要求調速范圍盡量大,同時在整個調速范圍內還需要保持較高的運行效率;(4)電機設計時盡量設計為高額定轉速,同時盡量採用鋁合金外殼,高速電機體積小,有利於減少電動汽車的重量;(5)電動汽車應具有最優化的能量利用,具有制動能量回收功能,再生制動回收的能量一般要達到總能量的10%-20%;(6)電動汽車所使用的電機工作環境更加復雜、惡劣,要求電機在有著很好的可靠性和環境適應性,同時還要保證電機生產的成本不能過高。
2幾種常用的驅動電機
2.1直流電動機
在電動汽車發展的早期,大部分的電動汽車都採用直流電動機作為驅動電機,這類電機技術較為成熟,有著控制方式容易,調速優良的特點,曾經在調速電動機領域內有著最為廣泛的應用。但是由於直流電動機有著復雜的機械結構,例如:電刷和機械換向器等,導致它的瞬時過載能力和電機轉速的進一步提高受到限制,而且在長時間工作的情況下,電機的機械結構會產生損耗,提高了維護成本。此外,電動機運轉時電刷冒出的火花使轉子發熱,浪費能量,散熱困難,也會造成高頻電磁干擾,影響整車性能。由於直流電動機有著以上缺點,目前的電動汽車已經基本將直流電機淘汰。
2.2交流非同步電動機
交流非同步電機是目前工業中應用十分廣泛的一類電機,其特點是定、轉子由硅鋼片疊壓而成,兩端用鋁蓋封裝,定、轉子之間沒有相互接觸的機械部件,結構簡單,運行可靠耐用,維修方便。交流非同步電機與同功率的直流電動機相比效率更高,質量約輕了二分之一左右。如果採用矢量控制的控制方式,可以獲得與直流電機相媲美的可控性和更寬的調速范圍。由於有著效率高、比功率較大、適合於高速運轉等優勢,交流非同步機是目前大功率電動汽車上應用最廣的電機。目前,交流非同步電機已經大規模化生產,有著各種類型的成熟產品可以選擇。但在高速運轉的情況下電機的轉子發熱嚴重,工作時要保證電機冷卻,同時非同步電機的驅動、控制系統很復雜,電機本體的成本也偏高,相比較於永磁式電動機和開關磁阻電機而言,非同步電機的效率和功率密度偏低,對於提高電動汽車的最大行駛里程不利。
2.3永磁式電動機
永磁式電動機根據定子繞組的電流波形的不同可分為兩種類型,一種是無刷直流電機,它具有矩形脈沖波電流;另一種是永磁同步電機,它具有正弦波電流。這兩種電機在結構和工作原理上大體相同,轉子都是永磁體,減少了勵磁所帶來的損耗,定子上安裝有繞組通過交流電來產生轉矩,所以冷卻相對容易。由於這類電機不需要安裝電刷和機械換向結構,工作時不會產生換向火花,運行安全可靠,維修方便,能量利用率較高。
永磁式電動機的控制系統相比於交流非同步電機的控制系統來說更加簡單。但是由於受到永磁材料工藝的限制,使得永磁式電動機的功率范圍較小,一般最大功率只有幾十千萬,這是永磁電機最大的缺點。同時,轉子上的永磁材料在高溫、震動和過流的條件下,會產生磁性衰退的現象,所以在相對復雜的工作條件下,永磁式電機容易發生損壞。而且永磁材料價格較高,因此整個電機及其控制系統成本較高。
2.4開關磁阻電機
開關磁阻電機作為一種新型電機,相比其他類型的驅動電機而言,開關磁阻電機的結構最為簡單,定、轉子均為普通硅鋼片疊壓而成的雙凸極結構,轉子上沒有繞組,定子裝有簡單的集中繞組,具有結構簡單堅固、可靠性高、質量輕、成本低、效率高、溫升低、易於維修等諸多優點。而且它具有直流調速系統的可控性好的優良特性,同時適用於惡劣環境,非常適合作為電動汽車的驅動電機使用。
考慮到作為電動汽車驅動電機使用,直流電機和永磁式電機在結構和面對復雜的工作環境適應性太差,很容易發生機械和退磁的故障,所以本文著重介紹開關磁阻電機與交流非同步機相比,有著以下方面的明顯優勢。
2.4.1電機本體結構方面
開關磁阻電機的結構比鼠籠式感應電機更簡單,其突出的優點是轉子上沒有繞組,僅僅是由普通硅鋼片疊壓而成。整個電機的損耗大部分集中於定子繞組上,這使得電機製造簡單,絕緣性好,容易冷卻,有著優秀的散熱特性,這種電機結構能減小電機體積和重量,可以用很小的體積取得較大的輸出功率。由於電機轉子機械彈性好,所以開關磁阻電機可以用於超高速運行。
2.4.2電機驅動電路方面
開關磁阻電機驅動系統的相電流是單向的,同時與轉矩方向無關,可以只用一個主開關器件來滿足電機的四象限運行狀態。功率變換器電路與電機的勵磁繞組直接串聯,各相電路獨立供電,即使電機的某相繞組或者控制器發生故障,只需使該相停止工作即可,不會造成更大的影響。所以,無論電機本體還是功率變換器都十分安全可靠,所以比非同步機更適合用於惡劣環境。
2.4.3電機系統性能方面
開關磁阻電機的控制參數多,很容易通過適當的控制策略和系統設計滿足電動汽車的四象限運行的要求,並且在高速運行區域也能保持優秀的制動能力。開關磁阻電機不僅效率高,而且在很寬的調速范圍內都可以保持高效率,這是其他類型的電機驅動系統難以媲美的。這種性能十分適合應用於電動汽車的運行情況,非常有利於提高電動汽車的續行里程。
『拾』 電動車電機什麼樣的好用
1、磁鋼越大越好
五個指標,標號,高度,厚度、寬度和數量。標號我們不細講了,標號是代表單位體積磁通量的反映,也就是磁鋼的級別,肉眼看不出來,只能聽廠家忽悠。高度、厚度、寬度和數量,當然是越高越厚越寬越多,磁鋼體積越大,對電機廠來講,成本越高,對用戶來講,力量越大,當然也意謂著耗電量會大點。
本著廠家成本越高,用戶利益越大化的原則,在滿足自己使用對力量的要求前提下,高*厚*寬*數量,越大越好。
2、相線越粗越好
相線,越粗越好,一般1個平方(不含膠皮哦)可以滿足20A限流,比如,你的控限流是70A,相線就要3.5平方以上。