純電動汽車怎麼驅動車輪
Ⅰ 混動汽車和電動汽車工作原理一樣嗎都是怎樣驅動的
1、不一樣。
2、動力源不一樣:一個是靠汽油(燃油)產生動力來驅動汽車;一個是靠電源來驅動汽車
3電動機是電磁動能轉換得到動力。汽油機是石油能源燃燒得到動力。這就是區別。
Ⅱ 如果一輛車的四個輪子分別由四個電動機驅動,那是不是就不需要差速鎖了
在新能源車興起,特別是純電動車開始普及之後,四驅系統不再只是原來的分動箱、傳動軸這樣的機械結構。電動四驅憑借著易於布局的特點向人們展示著它的性能,那麼這種電動四驅究竟是一種什麼樣的技術呢?
輪轂電機
這兩者可以說是大同小異,相同之處在於它們都是每個車輪上都會有一個驅動電機,不同之處就是輪邊電機是安裝在車輪旁邊,需要傳動軸才能夠驅動車輪。而輪轂電機則是屬於車輪的一部分,能夠直接對車輪進行驅動。
Ⅲ 純電動汽車的驅動系統由哪些部分組成
電動汽車由動力電池、底盤、車身和電器四部分組成。動力電池作為電動汽車的重要組成部分,分為電池模組、電池管理系統、熱管理系統、電氣及機械繫統這四個主要部分。底盤由驅動電機及控制系統、行駛系統、轉向系統和制動及能量回收系統四部分組成。
純電動汽車驅動系統的組成如圖7所示,主要由中央控制單元、驅動控制器、驅動電動機、機械傳動裝置等組成。為適應駕駛人的傳統操縱習慣,純電動汽車仍保留了加速踏板、制動踏板及有關操縱手柄或按鈕等。不過在電動汽車上是將加速踏板、制動踏板的機械位移量轉換為相應的電信號輸入到中央控制單元來對汽車的行駛實行控制的。對於擋位變速桿,為遵循駕駛人的傳統習慣,一般仍需保留,同樣除傳統的驅動模式外也就只有前進、空擋、倒退三個擋位,並且以開關信號傳輸到中央控制單元來對汽車進行前進、停車、倒車控制。
Ⅳ 哪款純電動車的驅動方式是用輪轂電機驅動的
小日本的
SIM-LEI一次充電的航程可達333公里
清水浩教授研究輪轂電機驅動電動汽車已有30多年歷史,陸續開發了10台輪轂驅動車,為了解決電動汽車續航能力差、價格昂貴等瓶頸問題,研發小組的專家們將重點放在減輕車體材料重量、提高再生能源效率、採用超低滾動阻力輪胎、大膽使用「魚」型流線型設計將行駛阻力系數降至最低,終於開發出與至今出現的電動汽車不同概念的輪轂電動汽車。
該款輪轂電動汽車外形猶如大海中暢游的「魚」,全長4.7米,車寬1.6米,高1.55米,載人4名,總重1650公斤,一次充電JC08模式下333公里、耗能77Wh/km ,100公里均速行駛模式下308公里、耗能84Wh/km,0→100km/h加速時間為4.8秒,最高時速可達150km/h。未來氣息的儀表盤、19英寸的倒車監視器,所有按鍵集中在方向盤左邊、鋰電池箱如抽屜放在汽車底部。輪轂電機設計可4輪兩驅動、4輪4驅動、8輪8驅動,新車設計和舊車改造均適用。
輪轂電機的設計也與常規輪轂電機不同,它一改傳統電動汽車平板式驅動,而採用了減速器方式和直接驅動方式。電機內置於輪轂依賴電機的微型化和高效能,具備高能效、擴大利用空間和控制性能高等優點,與替代引擎採用電機的電動汽車相比可延伸30%以上的續航里程。
清水教授稱今後倒車監視器還將具備信息通訊和娛樂功能,可以說該車的設計理念和功能給當今汽車行業帶來一場革命。為了實現不僅自己造汽車,更要用低廉的價格,向生產電動汽車的企事業單位提供電動汽車的尖端技術和信息的願望,該教授2009年8月聯合34家企事業成立了高科技公司「SIM-DRIVE」,所有投資企業可按商業規則享用科研成果。
本篇文章來源於汽車網[www.cnautonews.com]原文鏈接:http://www.cnautonews.com/plus/view.php?aid=57235
Ⅳ 純電動驅動汽車輪的原理
純電動汽車逐漸受到消費者的關注,因此消費者也比較關心它的結構和工作原理,因為這樣才能更好的使用,小編就來給大家介紹純電動汽車的工作原理。
純電動汽車工作原理介紹:簡介
電動汽車的組成包括:電力驅動及控制系統、驅動力傳動等機械繫統、完成既定任務的工作裝置等。電力驅動及控制系統是電動汽車的核心,也是區別於內燃機汽車的最大不同點。電力驅動及控制系統由驅動電動機、電源和電動機的調速控制裝置等組成。電動汽車的其他裝置基本與內燃機汽車相同。
Ⅵ 新能源汽車如何驅動
從新能源電動汽車的名字我們就可以看出新能源電動汽車與傳統的汽車不同這處在於新能源電動這五個字,也就說是新能源電動汽車的動力來源不是傳統的柴油各汽油而是新型能源——電能。 新能源電動汽的組成可以分為:電力驅動及控制系統、驅動力傳動等機械繫統、完成既定任務的工作裝置等。電力驅動及控制系統由驅動電動機、電源和電動機的調速控制裝置等組成:①、電源電源為電動汽車的驅動電動機提供電能,電動機將電源的電能轉化為機械能,通過傳動裝置或直接驅動車輪和工作裝置。有別於老式的電網電車,新能源電動汽車電源主要是高能蓄電池,這樣新能源電動汽車行車范圍就不會局限於電車電網,也不用擔心電網停電,這就使的新能源電動汽車行車的范圍與傳統汽車一樣了。②. 驅動電動機驅動電動機的作用是將電源的電能轉化為機械能,通過傳動裝置或直接驅動車輪和工作裝置。三相非同步交流電動機相比其它的類型的電動機的優勢:製造工藝相對簡單成熟、製造成本相對低、輸出功率大、穩定性好、維護成本較低。我所在的實習單位採用的是自家生產的三相非同步交流電機。 ③. 電機控制器該裝置是為電動汽車的變速和方向變換等設置的,其作用是控制驅動電動機的電壓或電流,完成電動機的驅動轉矩和旋轉方向的控制。採用交流電動機及變頻調速控制技術,使電動汽車的制動能量回收控制更加方便,控制電路更加簡單。 ④. 傳動裝置電動汽車傳動裝置的作用是將電動機的驅動轉矩傳給汽車的驅動軸,當採用電動輪驅動時,傳動裝置的多數部件常常可以忽略。因為電動機可以帶負載啟動,所以電動汽車上無需傳統內燃機汽車的離合器。因為驅動電機的旋向可以通過電路控制實現變換,所以電動汽車無需內燃機汽車變速器中的倒檔。當採用電動機無級調速控制時,電動汽車可以忽略傳統汽車的變速器。在採用電動輪驅動時,電動汽車也可以省略傳統內燃機汽車傳動系統的差速器。⑤. 行駛裝置行駛裝置的作用是將電動機的驅動力矩通過車輪變成對地面的作用力,驅動車輪行走。它同其他汽車的構成是相同的,由車輪、輪胎和懸架等組成⑥. 轉向裝置專項裝置是為實現汽車的轉彎而設置的,由轉向機、方向盤、轉向機構和轉向輪等組成。作用在方向盤上的控制力,通過轉向機和轉向機構使轉向輪偏轉一定的角度,實現汽車的轉向。多數電動汽車為前輪轉向,工業中用的電動叉車常常採用後輪轉向。電動汽車的轉向裝置有機械轉向、液壓轉向和液壓助力轉向等類型。⑦. 制動裝置電動汽車的制動裝置同其他汽車一樣,是為汽車減速或停車而設置的,通常由制動器及其操縱裝置組成。在電動汽車上,一般還有電磁製動裝置,它可以利用驅動電動機的控制電路實現電動機的發電運行,使減速制動時的能量轉換成對蓄電池充電的電流,從而得到再生利用。⑧. 工作裝置工作裝置是工業用電動汽車為完成作業要求而專門設置的,如電動叉車的起升裝置、門架、貨叉等。貨叉的起升和門架的傾斜通常由電動機驅動的液壓系統完成。
Ⅶ 電動汽車為何不用電機直接驅動車輪
現在有一些汽車公司已經推出了雙輪邊電機驅動的電動客車(注意,是客車),比如比亞迪K9,已經在西安的大街小巷跑了。但僅僅是客車的推廣。四輪驅動或者是小型汽車,都沒有投放市場。為什麼,說簡單了兩個字,成本。電動客車的研發大多數都有國家財政支持,舉例說某家車企一個項目拿了國家六千萬,但是小型汽車都沒有這種福分。說復雜了,就是技術不過關。下面列出的是輪轂電機的幾條技術難點:輪轂電機系統集驅動、制動、承載等多種功能於一體,優化設計難度大;車輪內部空間有限,對電機功率密度性能要求高,設計難度大;電機與車輪集成導致非簧載質量較大,惡化懸架隔振性能,影響不平路面行駛條件下的車輛操控性和安全性。同時,輪轂電機將承受很大的路面沖擊載荷,電機抗振要求苛刻;車輛大負荷低速爬長坡工況下容易出現冷卻不足導致的輪轂電機過熱燒毀問題,電機的散熱和強製冷卻問題需要重視;車輪部位水和污物等容易集存,導致電機的腐蝕破壞,壽命可靠性受影響;輪轂電機運行轉矩的波動可能會引起汽車輪胎、懸架以及轉向系統的振動和雜訊。
之前聽過美國EDI公司老總的講座,他從上世紀八十年代初就開始搞插電式混合動力汽車,三十年後,這種汽車才有機會投放到市場,原因很簡單,就是省油,污染少,環境友好。同樣,在這個集中驅動電動汽車大行其道的時代,如果分布式驅動電動汽車完成了技術積累,而且遇到了一個很好的市場契機,投放市場並非不可能。
Ⅷ 純電動汽車由電機驅動汽車
很高興回答您的問題,希望以下回答對您有所幫助。
混合動力汽車按動力總成結構及能量流傳遞方案不同,可分為串聯、並聯及混聯三種混合動力方式。串聯混合動力車輛中,發動機動力與電動機動力通過電氣系統傳遞;並聯和混聯混合動力車輛中,發動機動力與電動機動力通過一個專門的機電耦合機構實現向車輪的傳遞,常用的機電耦合機構包括行星齒輪耦合、變速器耦合及離合器耦合等。
串聯式混合動力系統的動力總成,發動機的機械能通過發電機轉化為電能,電動機將電能轉換為機械能傳到驅動橋,驅動橋和發動機之間沒有直接的機械連接。該方案的優點是系統控制簡單,缺點是難以應對復雜路況,電池充放電壓力較大,電池壽命要求較高。
Ⅸ 新能源汽車電驅系統是怎麼
現代電動汽車電驅動系統主要由四大部分組成:驅動電機、變速器、功率變換器和控制器。驅動電機是電氣驅動系統的核心,其性能和效率直接影響電動汽車的性能。驅動電機和變速器的尺寸、重量也會影響到汽車的整體效率。功率變換器和控制器則對電動汽車的安全可靠運行有很大關系。
純電動汽車驅動電機,電力驅動系統類型
按電力驅動系統的組成和布置形式不同,純電動汽車分為機械傳動型、無變速器型、無差速器型和電動輪型四種類型。
機械傳動型純電動汽車
由發動機前置後輪驅動的燃油汽車發展而來,保留了內燃機汽車的傳動系統,只是把內燃機換成了電動機。這種結構可以提高純電動汽車的起動轉矩及低速時的後備功率,對驅動電動機要求低,可選擇功率較小的電動機。
無變速器型純電動汽車
驅動系統的最大特點是取消了離合器和變速器,採用固定速比減速器,通過電動機的控制實現變速功能。這種結構的優點是機構傳動裝置的質量較輕、體積較小,但對電動機的要求較高,不僅要求有較高的起動轉矩,而且要求有較大的後備功率,以保證純電動汽車的起步、爬坡、加速等動力性能。
無差速器型純電動汽車
結構採用兩個電動機,通過固定速比減速器分別驅動兩個車輪,每個電動機的轉速可以獨立調節。當汽車轉向時,由電子控制系統實現電子差速,因此,電動機控制系統比較復雜。
電動輪型純電動汽車
將電動機直接裝在驅動輪內(也稱為輪轂電動機),可進一步縮短電動機到驅動車輪之間的動力傳遞路徑,但需要增設減速比較大的行星齒輪減速器,以便將電動機轉速降低到理想的車輪轉速。這種結構對控制系統控制精度和可靠性的要求較高。
電力驅動系統特性
能量轉換效率高
無污染、零排放、對環境友好
靈活方便控制工作狀態
系統工作狀態不會受到外界環境的影響
總體重量不變
無雜訊,對環境沒有影響
安全性好
何為電動汽車三合一電驅系統技術?
電動汽車三合一電驅系統技術是指將電控、電機和減速器集成為一體的技術,隨著電動汽車技術的不斷演進,集成化設計將無可爭辯地成為未來發展的趨勢。
目前市面上比較前列的電動驅動系統
GKN吉凱恩(納鐵福)
在不需要純電動或混合動力驅動時,可以通過一個集成的切斷裝置將電動機從傳動系統中斷開,該裝置採用了機電驅動離合器。GKN還對齒輪和軸承布置進行了優化,實現更高的效率、更好地NVH性能和耐久性。
博世Bosch
博世Bosch新動力系統e-axle電動軸,使電動軸驅動可提供更佳的續航力。博世BOSCH電驅動橋特點:高度集成化、簡化冷卻管路和功率驅動線纜、平台化設計靈活適配不同車型。
ZF三合一電驅系統
采埃孚(ZF)研發的適用於小型和中型轎車的電動車驅動產品,能很好的適應未來的城市交通狀況。利用多面壓合連接技術來實現鋁制推力桿與鋼制橫結構的鏈接,具備電能轉化效率高和性能優異的特點。
Ⅹ 純電動汽車驅動布置方式有哪些,請簡要說明其特點
分散能獨立式示意圖
純電動汽車驅動布置主要有兩種形式: 1.集中驅動 2.分散獨立驅動 ,由上圖可以看出,兩種形式的主要區別在於驅動電機的位置及個數。
集中驅動式結構簡單緊湊,適合量產
分散獨立驅動式結構相對復雜,優點是可以獨立控制、實現車輪獨立運轉