電動汽車電池電壓採集原理
㈠ 電動汽車的工作原理是什麼,其動力源是什麼
利用蓄電池作為儲能動力源,通過電池向電動機提供電能,驅動電動機運轉,從而推動汽車行駛。純電動汽車的可充電電池主要有鉛酸電池、鎳鎘電池、鎳氫電池和鋰離子電池等,這些電池可以提供純電動汽車動力。同時,純電動汽車也通過電池來儲存電能,驅動電機運轉。
㈡ 請問一下電動車的電量是經過什麼原理過程檢測處理後顯示出來的請詳細說說檢測電量的過程,謝謝!
對電動車控制器是測量不同負載下的電壓電流,沒有電量關系。對蓄電池是通過充滿電和放電到一定標准來檢查電池的容量。前面的設備等於測試功率的機器(叫測功機),後面的設備等於電能表 (電池容量檢測儀)
補充:你說電動車上的那個是簡易的,測量的是電池電壓,根據電壓高低判定電量,不是電量,目的是提示
㈢ 電動汽車充電系統原理圖
由車載動力電池提供能量,並由電機提供動力來實現行駛。電動汽車行駛消耗的是電池的能量,電池電量消耗後需要補充電量, 通過把電網或者其他儲能設備中的電能轉移到車輛的電池的過程。
電網或者儲能設備中的電能,需要經過充電設備的轉化,以匹配電動汽車動力電池的技術特性才能完成充電。充電設備的轉化過程還需要和電動汽車上動力電池的管理系統BMS(Battery Management System)協商,以適當的電壓和電流來完成充電,並且在充電過程中,充電電流會隨著充電進程而減小,初期可以大電流充得快一些,後期小電流充得慢一些。交流慢充:交流充電樁沒有功率轉換模塊,不做交直流轉換,輸出交流電,接入車內,通過車上的充電機轉換為直流電後再輸入電池。充電功率取決於車載充電機功率。目前主流車型車載充電機有2Kw、3.3Kw、6.6Kw幾種。總的來說充電較慢,一般的混合動力車型需要4-6小時充滿,純電動車要8小時以上充滿,充電倍率基本都在0。5C以下。直流快充:直流充電樁內置功率轉換模塊,能將電網的交流電轉換為直流電, 不須經過車載充電機轉換,直接接入車內電池。充電功率取決於電池管理系統和充電樁輸出功率,兩者取小。
㈣ 電動車電池充電器工作原理
電動車電池充電器工作原理為蓄電池放電。
充電器充電就是在蓄電池放電後,按與放電電流相反的方向用直流電通過蓄電池,使電能在蓄電池內轉化為化學能儲存起來,恢復其工作能力,這個過程叫做蓄電池充電。
蓄電池的充電方式有恆流充電和恆壓充電兩種方式。蓄電池的充電電壓必須高於蓄電池的總電動勢。其充電方法是:將蓄電池負極與電源負極相連,蓄電池正極與電源正極相連。
(4)電動汽車電池電壓採集原理擴展閱讀:
電動自行車的充電器一般採用開關電源充電器,分為二階段充電模式和三階段充電模式兩種。
二階段充電模式即恆壓充電,它是將充電過程分為恆流、恆壓兩個充電階段,充電電流隨蓄電池電壓上升而逐漸減少。當蓄電池電量上升到一定程度時,再轉為恆壓充電,使蓄電池內的電壓緩慢上升;
當蓄電池的電壓達到充電器的充電終止電壓(不同的充電方式,電壓不一樣,多段式充電方式的終止電壓一般為41.4V,恆壓式充電方式一般為43.8~44.4V)時,再轉為涓流充電,即浮充,這樣可以有效的保護蓄電池,延長蓄電池的使用壽命。電動車普遍採用三階段式充電。
㈤ 太陽能電動車的工作原理
陽光照射電池陣列時,產生光生電流。能量(電流)通過峰值功率跟蹤器2被直接傳送到電機控制器中,驅動電機5旋轉,使車輛行駛。剩餘電量由蓄電池儲存起來,以便太陽電池板電量不足或陰雨天氣時驅動電機。這一過程由控制器控制。車輛的啟動、加速、轉向、制動由駕駛員操縱。
太陽能電池是一種對光有響應並能將光轉換成電力的器件裝置。能產生光伏效應的材料有許多種,如單晶硅、多晶硅、非晶硅、砷化鎵、硒銦銅等,它們的發電原理基本相同。以晶體為例:P型晶體硅經過摻雜磷可得N型硅,形成P-N結。當光線照射太陽能電池陣列板的表面時,一部分光子被硅材料吸收,光子的能量傳遞給了硅原子,使電子產生了躍遷,成為自由電子,在P-N結兩側集驟形成了電位差,當外部電路接通時,在該電壓的作用下,將會有電流流過外部電路,從而產生一定的輸出功率。這個過程的實質是:光子能量轉換成電能的過程。太陽能陣列電池板是由光敏半導體材料製成的,大多使用硅化合物。
根據所用材料的不同,太陽能電池板可分為:硅太陽能電池;以無機鹽如砷化鎵III-V化合物、硫化鎘、硒銦銅等多元化合物為材料的電池;功能高分子材料制備的太陽能電池;和納米晶太陽能電池等。不論以何種材料來製作電池,對太陽能電池材料一般的要求有:半導體材料的禁帶不能太寬;要有較高的光電轉換效率;材料本身對環境不造成污染;材料便於工業化生產且材料性能穩定。基於以上幾個方面考慮,硅是最理想的太陽能電池材料,這也是太陽能電池板以硅材料為主的主要原因。
太陽能電池組件是供電系統中的核心部分,也是太陽能供電系統中價值最高的部分。其作用是將太陽的輻射能量轉換為電能,或送往蓄電池中存儲起來,或推動負載工作。太陽能組件中的質量和成本將直接決定整個系統的質量和成本。太陽能控制器的作用是管理和控制整個系統的工作狀態,並對蓄電池起到充電保護、過放電保護的作用,與純電動汽車的電動源控制管理系統具有相同的作用。在溫差較大的地方,合格的控制器還應具備溫度補償的功能。其它附加功能如光控、時控等應當都是控制器的可選項。蓄電池的作用是在有光照時將太陽能電池組件所提供出的電能儲存起來,到需要的時候再釋放出來。
太陽能電池組件是由單個光伏電池拼接組成,或由折疊式支架拼接組成陣列。因為單個光伏電池(如硅電池)的電壓太低,所以都要把它們串、並聯構成有實用價值的光伏電池板,陣列成一個應用單元,然後根據供電要求,再由多個應用單元的串、並聯組成整個太陽能光伏電池板的供電組件。蓄電池組是太陽能光伏電池的儲能裝置,在夜間或光照不足及負載消耗超出光伏電池的發電量時,由蓄電池組向負載供電。為了減輕整個系統的重量,應採用高能蓄電池組。
太陽能電動汽車與燃油汽車在動力結構上有很大的不同,但與純電動汽車的結構卻有許多相同之處。所不同的是純電動汽車的充電方式必須依靠電源,而太陽能電動汽車的電能裝置來自於太陽能光伏電池和電源兩種充電方式,而純電動車不必背負巨大的太陽能光伏陳列電池板。當太陽能電池板產生電能,與控制裝置和儲能裝置連接後,再由另一端連接負載,負載就是電動汽車的電動機(驅動裝置)。一般在電動車運行時,被轉換的太陽光能通過控制裝置直運送到負載,而在停駛或太陽光足時,剩餘部分的電能向蓄電池充電並儲存起來,當太陽光不足時,由太陽能光伏電池和蓄電池同時向負載供電;當汽車減速或剎車時,還應設計「回授性制動裝置」,將電能量通過控制器,將發動機變成發電機,反向進入蓄電池進行儲存。用互補式不間斷供電技術,改變嚴重依賴天氣的缺陷,完善電動車的性能。
在設計電動車整個供電系統時應綜合考慮以下幾個方面:
一是光強與負載。太陽能光伏電池是一種光電轉換裝置,其輸出功率的大小取決於光照的強度,要拼裝多大的太陽能光伏電池組件主要取決於能夠接受光照的強度及所用負載的大小。
二是蓄電池組的選擇。要根據光伏電池組合的發電容量來選擇蓄電池組的容量,以便在陰雨天及晚上可以由蓄電池向負載供電,為了減輕系統重要,最好選用高比能量的蓄電池。
三是機械強度。考慮到電動汽車的整個供電系統都是在運動和運行中使用,必須考慮系統的機械強度,耐腐蝕性,耐氣候變化等各種因素。太陽能光伏電池組陣列應採取高強度鋼化玻璃外殼,支架系統應採用高強度材料。使整個供電系統具有便於運行、重量輕、效率高、可靠性好、造價低等優勢。
5太陽能電動汽車的控制系統
太陽能光伏電池板是將太陽能量轉變為電能,是因為光子在日光下產生能量帶動電子從一個半運動的金屬粒子的一層轉移到另一層面,電子的運動產生了通用的電力。太陽能光伏電池板可以由光電轉化率、能量比大小來選擇。由於許多獨立的矽片被組合,形成龐大的太陽能光伏陣列,並產生能夠電動汽車驅動的電能,而這種電能量還必須達到高電壓、高功率的程度,這就要有一個重要的系統-電力控制系統。
電動汽車的心臟部位就是電源及其蓄電池組,而運行系統基本上是由電源、電控、電機來組成。而在太陽能電動汽車上其控制系統不僅僅控制電動源(電池),還要增加太陽能光伏電池陣列的控制功能。太陽能光伏電池所供應的電壓與蓄電池組飽和電壓基本相同,可以直接耦合,在太陽能功率充足時,多餘的能量進入儲能的蓄電池,在太陽能光電功率不足時由蓄電池完成電力驅動的任務。這些,必須由控制系統來完成。控制系統的功能就是對充電和放電的過程進行控制和保護,這樣才能保證對整個電動源系統的正常充電、放電及其對電動汽車的驅動。最簡單的控制系統也應該起到以下三個方面的作用:
一是按照使用要求給出穩定的電壓、電流;
二是蓄電池過充電或過放電時可以報警或自動切斷電路;
三是負載發生短路時可以自動切斷電源電路。
控制系統是控制太陽能光伏電池陣列板對蓄電池的充電以及蓄電池和太陽能電池對負載的放電過程,實現對太陽能光伏電池和蓄電池的科學管理,指示蓄電池過壓、欠壓等運行狀態,具有兩路負載輸出的管理,或兩路負載可以隨意設置為同時工作、分時工作或單獨工作等模式,同時具有負載過流、短路保護功能,具有較高的自動化和智能化水平。其硬體結構主要由電壓採集電路、負載輸出控制與檢測電路、指示或顯示電路及鍵盤電路等部分組成。電壓採集電路包括太陽能光伏電池板和蓄電池電壓採集,用於太陽光線強弱的識別以及蓄電池電壓的獲取等。
在電動源控制系統利用子系統的控制功能對蓄電池進行充電管理時,若太陽能光伏電池正常充電蓄電池時,控制器將關斷負載,以保證負載不被損傷,當充電電壓高於保護電壓時自動關斷對蓄電池的充電;此後若電池電壓掉至維護電壓時,蓄電池進入浮充狀態,當蓄電池低於維護電壓時,啟動的應當是均充狀態。當蓄電池荷電電壓低於保護電壓時,控制系統應當自動關閉負載開關,以保護蓄電池不受損壞。在蓄電池負載關閉後,有兩路充電電路可選擇使用,在太陽光照較強時自動啟動太陽能光伏電池板充電電路,使其發揮更大功效,或使用外充電源進行快速充電。
太陽能電動汽車電動源控制系統的軟體設計與硬體電路是相對應的,包括有主程序、定時中斷程序、A/D轉換子程序、外部轉換子程序及鍵盤處理子程序、充放電管理子程序、負載管理子程序等。作為太陽能電動汽車的「心臟」——電動源的控制系統,不僅僅需要具備基本的電力控制功能,還要能體現現代控制理念,也就是達到「一體化」控制,並實現「智能化」的控制管理能力,在基本電動源電力系統基礎上,「智能化」的電動源控制系統是以電子模塊為控制中心,增加了以鍵盤輸入、遙控及液晶顯示組成的人工界面模塊,還增加了以安全報警模塊,在內部控制演算法還可採取模糊控制或其它智能控制演算法實現,此外還可以使用預留可擴展模塊。
㈥ 動力電池的原理特點
動力電池的直接作用是為電動汽車提供動力來源的電源,很多電動汽車的動力電池採用三元鋰電池,這種電池以鈷酸鋰錳酸鋰或鎳酸鋰等化合物為正極,以可嵌入鋰離子的碳材料為負極使用有機電解質。
動力電池主要區別於用於汽車發動機起動的起動電池。 多採用閥口密封式鉛酸蓄電池、敞口式管式鉛酸蓄電池以及磷酸鐵鋰蓄電池。
動力電池特點
高能量和高功率; 高能量密度; 高倍率部分荷電狀態下(HRPSOC)的循環使用; 工作溫度范圍寬(一30 ~65℃); 使用壽命長,要求5—10 年; 安全可靠。
動力電池安裝位置
動力電池總成安裝在車體下部,動力電池的組成部件包括各模組總成、CSC採集系統、電池控制單元(BMU)、電池高壓分配單元(BBOX)、維修開關等部件。
圖 動力電池安裝位置
1—動力電池總成;2—車身;3維修開關
動力電池構造
動力電池系統工作原理
動力電池系統工作原理如下:
(1)電池單體。電池單體是直接將化學能轉化為電能的基本單元裝置,包括電極、隔膜、電解質、外殼和端子,並被設計成可充電。
(2)電池模組。電池模組將一個以上電池單體按照串聯、並聯或串並聯方式組合,且只有一對正負極輸出端子,並作為電源使用的組合體
(3)電池單元。電池單元由數十個電池單體或電池模組串聯在起,構成一個電池單元。由數個電池單元串聯在一起,構成動力電池總成。
(4)CSC採集系統。每一個電池單元有多個CSC採集系統,以監測其中每個電池單體或電池組單體電壓、溫度信息。
CSC採集系統將相關信息上報電池控制單元(BMU)並根據BMU的指令執行單體電壓均衡。
(5)電池控制單元(BMU)。安裝於動力電池總成內部,是電池管理系統核心部件。電池控制單元(BMU)將單體電壓、電流、溫度及整車高壓絕緣等信息上報整車控制器(VCU)並根據∨CU的指令完成對動力電池的控制
(6)電池高壓分配單元(BBOX)。安裝在動力電池總成的正負極輸出端,由高壓正極繼電器、高壓負極繼電器、預充繼電器、電流感測器和預充電阻等組成
(7)維修開關。位於動力電池總成中間表面位置,打開駕駛室內副儀表手套箱開關,可操作維修開關。在高壓零部件檢查和維護前斷開維修開關可以確保切斷高壓。
電動汽車動力電池維修注意事項:
在操作維修開關時,首先確保電池對外無電流輸出,並且佩戴絕緣防護裝備。
大家看完了介紹之後大家是不是對於汽車動力電池構造與工作原理 動力電池的作用介紹這個問題有了一定的了解了呢!看完這些知識後是不是非常有幫助呢,最後希望汽車維修網小編的介紹能夠幫助到大家。
㈦ 純電動汽車DC-DC工作原理
DC -DC轉換器替代了傳統燃油車掛接在 發動機上的12V發電機,和蓄電池並聯給各用DC-DC在直流高壓輸入端接觸觸器吸合後便開始工作,輸出電壓標稱13.8V。DC-DC 在上OK電時、充電時(包括交流充電、直流充電)、智能充電時都會工作,以輔助低壓鐵電池為整車提供低壓電源。
㈧ 電動車的電池原理是什麼
電池的內部一般是22~28%的稀硫酸。電池正放的時候電解液可以淹沒極板並且還剩下一點空間如果把電池橫放的話會有一部分電極板暴露在空氣中,這對電池的極板非常不利,而且一般的電池的觀察孔或者電池的頂部都有排氣口與外界相通,所以電池橫放電解液很容易流出。蓄電池是電池中的一種,它的作用是能把有限的電能儲存起來,在合適的地方使用。它的工作原理就是把化學能轉化為電能。
它用填滿海綿狀鉛的鉛板作負極,填滿二氧化鉛的鉛板作正極,並用22~28%的稀硫酸作電解質。在充電時,電能轉化為化學能,放電時化學能又轉化為電能。電池在放電時,金屬鉛是負極,發生氧化反應,被氧化為硫酸鉛;二氧化鉛是正極,發生還原反應,被還原為硫酸鉛。電池在用直流電充電時,兩極分別生成鉛和二氧化鉛。移去電源後,它又恢復到放電前的狀態,組成化學電池。鉛蓄電池是能反復充電、放電的電池,叫做二次電池。它的電壓是2V,通常把三個鉛蓄電池串聯起來使用,電壓是6V。汽車上用的是6個鉛蓄電池串聯成12V的電池組。鉛蓄電池在使用一段時間後要補充硫酸,使電解質保持含有22~28%的稀硫酸。
放電時,電極反應為:PbO2+4H++SO42-+2e-=PbSO4+2H2O
負極反應:Pb+SO42--2e-=PbSO4
總反應:PbO2+Pb+2H2SO4===2PbSO4+2H2O(向右反應是放電,向左反應是充電)
蓄電池的應用十分廣泛,可用於UPS,電動車,滑板車,汽車,風能太陽能系統,安全報警等等方面。
鉛酸蓄電池產品主要有下列幾種,其用途分布如下:
起動型蓄電池:主要用於汽車、摩托車、拖拉機、柴油機等起動和照明;
固定型蓄電池:主要用於通訊、發電廠、計算機系統作為保護、自動控制的備用電源;
牽引型蓄電池:主要用於各種蓄電池車、叉車、鏟車等動力電源;
鐵路用蓄電池:主要用於鐵路內燃機車、電力機車、客車起動、照明之動力;
儲能用蓄電池:主要用於風力、太陽能等發電用電能儲
㈨ 電動車充電系統工作原理是什麼
電動車自動充電的原理:
我們目前用的電動車充電器大部分都是脈沖式充電器。就目前來說,以UC3842為主控晶元的充電器還是占絕大多數,當然也有不少是以TL494為主控晶元的充電器,對於採用這種晶元的充電器本文不做闡述,因這兩種充電器的維修基本上是大同小異的。
這類充電器的原理與開關電源的原理是基本相同的220V的交流電經交流濾波電路濾除外來的雜波信號(同時也防止電源本身產生的高頻雜波對電網的干擾),再經二極體橋式整流電路和濾波電路,整流濾波後得到約300V的直流電,送給功率變換電路進行功率轉換。功率變換電路中的開關功率管(IGBT)就在脈沖寬度調制控制器(UC3842)輸出的脈沖控制信號驅動下,工作在「開」「關」狀態,從而將300V直流電切換成寬度可調的高頻脈沖電壓。
把高頻脈沖電壓送給高頻脈沖變壓器,其次級就會感應出一定的高頻脈沖交流電,並送給高頻整流濾波電路進行整流,濾波;最後輸出一個很平滑的直流電,供給蓄電池充電。
由於蓄電池剛開始充電時和充過一段時間後,蓄電池的容量和端電壓均不一樣,這就由充電器內部取樣電路將取樣信號通過光電耦合器(PC817)送入控制電路,經過脈寬調制晶元(UC3842)內部調制,由控制電路的輸出端將變寬或變窄的驅動脈沖送到開關功率管的柵極,使變換電路產生的高頻脈沖方波也隨之變寬或變窄,使蓄電池的充電分別進入:恆流充電,恆壓充電和浮充充電這三個充電階段。