电动汽车电池包的绝缘要求
A. 纯电动汽车绝缘故障是什么原因
电动汽车有一个很大的潜在让人害怕的地方是触电,因此有了一份专门针对车辆电气安全的安全标准《GB/T 18384.3-2015 电动汽车安全要求第3 部分:人员触电防护》。里面有关于电气安全的部分有不少,其中对于绝缘故障可能造成高压电暴露,引起人身伤害。这个起始阈值也做了最小的规定,动力系统的测量阶段最小瞬间绝缘电阻为0.5kΩ/V交流、直流为0.1kΩ/V。 各整车厂开发的纯电动车辆, 则根据各自设定的电压等级来确定动力系统的绝缘电阻报警阀值,还有一个非常重要的是绝缘检测的策略和容错策略。
B. 新能源汽车绝缘检测原理
当前主流的绝缘检测方法有两种,电桥法和交流注入法,但这一功能由电池管理系统BMS来实现。电桥法又称被动检测法,主要原因必须有高压才能进行绝缘检测。交流注入法又称主动检测法,因为只需12V铅酸上电即可完成绝缘检测功能。关于绝缘检测的专利大家去网上搜搜也非常的多,但大多也是基于上述两种方法的演变和优化。大致总结如下(若有不妥,欢迎探讨,更欢迎批评指正):
打开网络APP,查看更多高清图片
电桥法重难点解读:
(一)电桥法的检测原理
电桥法的工作原理是BMS通过检测高压正与高压负之间的分压变化来计算正极/车身与负极/车身的绝缘阻值,检测原理如下三步:
1. 闭合开关S1,闭合开关S2:BMS检测到V1,V2的电压;
2. 闭合开关S1,断开开关S2:BMS检测到V1’的电压;
3. 断开开关S1,闭合开关S2:BMS检测到V2’的电压;
4. 根据上述三个步骤,已知电池的总电压U以及正负极桥臂的分压电阻及其比例,可以列出三个方程U=aV1+bV2,
5. 根据这个方程式来解方程可以求得:正极/壳体阻值=Rp,负极/壳体=Rn
两个阻值便是我们平时整车上读取到绝缘值,以上即为电桥法的检测原理。
(二)电桥法的设计难点
电桥法的稳定性及可靠性还需重点考虑如下几点(上述四个电压值V1,V2,V1’,V2’以下统称V1,V2,欢迎补充和探讨):
1. 分压比例及ADC的选取:
绝缘检测为了兼顾成本会牺牲一部分精度(采用12bit ADC采样,甚至直接用单片机内部的ADC采样),这个时候对电阻的分压比例(R1/R2或R4/R3)的选取提出较高的要求,
电阻分压比例太大采样分辨率不够,无法做到较高精度;
电阻分压比例太小采样超出量程,无法做到全电压范围的采样;
2. 寄生电容的影响:
大家都知道,整车上寄生电容的实际存在(一般在几百纳法级,也有远大于这个量级的)。
由于寄生电容会导致V1,V2电压值稳定需要一定时间,这个时候就会出现几个问题:
BMS无法准确判断V1,V2电压的稳定采样点,电容电压未稳定或者电容开始漏电导致V1,V2的电压不是真实分压的值,这样计算出来的绝缘值不准,这也是前几年有些车绝缘不稳定的要因之一,现在好多了;
BMS等待电压稳定的时间,等待的时间过长导致绝缘检测时间偏长,可能不满足功能安全中FTTI的时间要求;
寄生电容值随着天气以及车辆的老化会发生改变,这个时候要确保设计仍然满足前期的采样精度和时间目标就对算法的稳定性及适应性提出了较高的要求,主要硬件电路以及软件滤波要考虑;
3.电压V1,V2的采样同步实时性的影响
理论上V1,V2的实时性越高对绝缘采样精度及稳定性越有利,但是很遗憾这个也只能是理论,显然是无法完全同步的。为了方便理解,我暂且假定一个非常极端实车工况来说明同步实时性的影响:
阶段一:猛踩油门踏板上陡坡,此时BMS恰好为步骤2检测V1’;
阶段二:猛踩制动踏板下陡坡,此时BMS恰好为步骤3检测V2’;
大家可以先想想这个情景以及这个情景对绝缘检测的影响。踩油门踏板的时候电池包对外大电流放电,由于锂电池的DCR+极化内阻等存在,导致电池包的高压会被急剧拉低(由电流的大小决定,一般在50~100V,以一个400V电压来说电池实际输出电压为350V)。踩制动踏板的时候由于制动能量回收整车对电池包大电流充电,同理导致电池包的高压会被瞬间抬高至450V。那么问题就来了,V1’是以350V分压检测得到的,V2’是以450V分压检测得到的,用这一组电压去计算绝缘是不妥的,轻则绝缘值误差较大,最严重的情况下可能出现绝缘误报漏报导致整车做了对应的故障策略。
C. 新能源汽车绝缘故障解决方法
电动汽车有一个很大的潜在让人害怕的地方是触电,因此有了一份专门针对车辆电气安全的安全标准《GB/T 18384.3-2015 电动汽车安全要求第3 部分:人员触电防护》。里面有关于电气安全的部分有不少,其中对于绝缘故障可能造成高压电暴露,引起人身伤害。这个起始阈值也做了最小的规定,动力系统的测量阶段最小瞬间绝缘电阻为0.5kΩ/V交流、直流为0.1kΩ/V。 各整车厂开发的纯电动车辆, 则根据各自设定的电压等级来确定动力系统的绝缘电阻报警阀值,还有一个非常重要的是绝缘检测的策略和容错策略。图1 整车绝缘问题概览
第一部分 绝缘检测的故障原因
电动汽车绝缘的问题主要可以分为:
内部:这部分我们细致的展开,从大的来看,主要是电解液泄露、外部液体进入、绝缘层被破坏之后,电池模组和单体出现了导电的回路。这类故障发生之后可能会发生较为严重的后果(主要是打火和烧蚀,引起模块内单体的短路故障)。
在大的模组内,我们可以找到通过模组内部、BMU、BMS和模组与托盘等多种绝缘突破路径。
BMU对于Coating的要求很高,大量有电位差的线缆通过连接器接入,如果出现凝露和电金属迁移,容易在内部产生各种潜在导通路径
模组内部由于振动、冲击导致磨损、错位,如果出现绝缘纸、蓝膜失效的情况,就会出现绝缘问题
BMS和BDU这两个部件由于高压的直接接入,如果出现隔离失效,就会产生类似软短路的情况发生
下图所示,真正绝缘问题出现电击人的情况,都需要出现人本身去接触电池的一端输出才会出现下图的电击事件发生。
2. 电池外部的高压回路:这部分可以通过接触器断开而隔绝
a) 高压连接器和高压线缆:这里比较多的情况是两种,一种是局部放电引起的绝缘失效;还有就是连接器金属物质迁移导致的绝缘失效。
备注:在这个案例里面,通电,高温,潮湿,氯离子存在的条件下,电连接器内部金属构件发生了表面镀银层的电迁移和主体材料的腐蚀,产物在电场的作用下附着在绝缘组件上并将外金属套壳和与内金属触条一体的金属构件连接,从而导致电连接器绝缘阻值大幅降低失效。
b) 高压用电部件内部出现绝缘失效:把内部的连接器、连线归于上一类以后,基本就考虑功率部件相关的绝缘防护是否合理。特别的如电机、变压器内绝缘情况。
从场景上区分,可以分解成充电状态、正常状态、涉水、碰撞事故、结露、暴雨、淹没、清洗等状态。这是贯穿整个寿命周期和使用场景对各个环节进行考虑的结果,当然实际整车级别的验证测试也需要涵盖。
从路径上分,可以从爬电距离、固态绝缘和空气间隙等方面对绝缘进行破坏。
以上这些,都算是真正绝缘发生了问题。还有一些问题就是绝缘检测电路和算法本身受到干扰或者出现了硬件的损坏。我们可以细分为:
绝缘检测超差:受到外部干扰检测出来过高,设计范围超差
绝缘检测失效:电路由于开关(光耦或者高压继电器失效)出现失效
第二部分 车辆诊断与处理和漏电车辆处理
我们还是以LEAF为例,其DTC分了三个故障:
模式A:是从动力源头切断任何充电和放电的过程,主要响应比较高等级的故障
模式B:考虑电池的故障在一定范围内之类,限制电机输出功率,在充电模式下充电停止(阻止了能量回收)
模式C:限制电池包的输入和输出功率
模式D:仅亮起故障等,其他不做处理
这里的三个定义为处理绝缘值信号(P33DF是判断信号异常高、P33E0是采集信号异常低,P33E1是出现绝缘报警),这里分层的原因主要是是对整个故障错误分类。不过我倒是看到有不同的处理方法。我们在这里可以有几个区分点:
启动之时:启动的时候检测可以根据数值、诊断电路本身情况、整个系统上电的范围,可以判断出问题出在哪里。根据数值的不同选取处理办法。严格来说,根据在不同状态下,绝缘电阻的测量误差可以做不同的策略。
充电检测:这个我会后面仔细谈一谈快充多回路检测过程中可能出现的问题。这个在法规层制定的时候就已经有很多的涉及和探讨。
车辆行驶过程中:这点是我觉得很保守的,在车辆行驶过程中,由于有各方面的干扰存在包括纹波、电压在大电流充放过程的变化,使得整个记录的频次需要用计数器来做;根据数值也可以做不同的策略来判断这个严重情况,执行限功率或者更好的措施。
区分了DTC之后,当发生了绝缘故障之后,对于维修人员首先应保证人员安全,操作者须配戴好有一定安全等级,符合国家相关标准要求的防护用品(防护用品通常有使用年限要求),如绝缘手套(橡胶手套+外用手套)、绝缘鞋等。
这里有个绝缘电阻的参考表,用绝缘表来测非带电部件还是比较管用的。从车辆的寿命周期考虑,维护过程中还是安置一个MSD是比较靠谱的,能够在接触器粘连和各种意外条件下保证总线上是没有电的。
D. 新能源汽车电池包隔热材料怎样选
蓄电池包为由一个或多个蓄电池模块组成的单一机械总成。通常每套电动车用动力电源系统由多个电池包组成。电池包包括电池模块、箱体、连接线束、管理板等。电池包的设计需满足以下要求:
(l)满足整车安装条件,包括尺寸、安装接口等;
(2)电池箱体与电池模块之间的绝缘,电池箱体与整车之间绝缘;
(3)防水、防尘满足IP54或以上要求;
(4)减少电池包内部使电池产生自放电的可能性;
(5)各种接口(通信、电气、维护、机械)等完全、合理;
(6)模块在电池箱体内的固定、电池包在整车上的固定满足振动、侧翻、碰撞等要求;
(7)温度场设计合理,要求电池箱体内部电池温差不超过5摄氏度;
(8)禁止有害或危险性气体在电池包内累积,更不能进入乘客舱;
(9)部分应用(纯电动汽车)要求快速更换。
E. 电动汽车三项强制性国标发布 电池热失控需保证5分钟逃生时间
5月12日,工业和信息化部组织制定的GB 18384-2020《电动汽车安全要求》、GB 38032-2020《电动客车安全要求》和GB 38031-2020《电动汽车用动力蓄电池安全要求》三项强制性国家标准(下称“三项强制标准”)由国家市场监督管理总局、国家标准化管理委员会批准发布,将于2021年1月1日起开始实施。
电动汽车安全是消费者关注的焦点,也是新能源汽车产业持续健康发展的根本保障,三项强制标准进一步提高和优化了对电动汽车整车和动力电池产品的安全技术要求。
其中,《电动汽车安全要求》主要规定了电动汽车的电气安全和功能安全要求,增加了电池系统热事件报警信号要求,能够第一时间给驾乘人员安全提醒;强化了整车防水、绝缘电阻及监控要求,以降低车辆在正常使用、涉水等情况下的安全风险;优化了绝缘电阻、电容耦合等试验方法,以提高试验检测精度,保障整车高压电安全。
《电动客车安全要求》针对电动客车载客人数多、电池容量大、驱动功率高等特点,在《电动汽车安全要求》标准基础上,对电动客车电池仓部位碰撞、充电系统、整车防水试验条件及要求等提出了更为严格的安全要求,增加了高压部件阻燃要求和电池系统最小管理单元热失控考核要求,进一步提升电动客车火灾事故风险防范能力。
《电动汽车用动力蓄电池安全要求》在优化电池单体、模组安全要求的同时,重点强化了电池系统热安全、机械安全、电气安全以及功能安全要求,试验项目涵盖系统热扩散、外部火烧、机械冲击、模拟碰撞、湿热循环、振动泡水、外部短路、过温过充等。特别是标准增加了电池系统热扩散试验,要求电池单体发生热失控后,电池系统在5分钟内不起火不爆炸,为乘员预留安全逃生时间。
近年来,随着电动汽车开始走进千家万户,锂离子动力电池正在越来越多的进入到我们日常生活之中,锂离子电池的高能量密度和长循环寿命赋予了电动汽车更长的续航里程和更长的使用寿命。但是作为直接关系到使用者生命财产安全的产品,动力电池的安全性自然也到了更多的关注。
“未来吸引消费者购买的将不再是动力性排而是安全性。”中国科学院院士、清华大学教授欧阳明高指出,里程焦虑推动了电池技术的进步,锂离子动力电池系统的比能量在逐年提升、成本在逐年下降,但与此同时,电池比能量的提升也带来材料热稳定性的下降,增加了电池的安全风险,特别是如何抑制动力电池热失控已经成为业界研究的重点课题之一。
所谓“电池热失控”,简单来说就是当电池短时间内温度快速升高,超出电池的安全使用温度范围之后,引起电池热失控,进而发生电池燃烧等事故,而充电过充、枝晶析锂、枝晶刺破隔膜、过热导致隔膜崩溃等都会诱发内短路。电池的内短路问题并非不能解决,但就要求车辆的电池管理逐步升级为新一代以安全为核心的系统,这也对相关整车制造与电池企业提出了更高的要求。
欧阳明高表示,随着电动汽车动力电池在安全理念上的升级,今年技术领先的两家企业不约而同地在电池包方面作出了创新,那就是宁德时代的CTP和比亚迪的刀片电池技术。
其中,宁德时代的CTP电池包专利取消了现有技术中的电池箱体,直接将电池模组通过固定件穿过套筒或者利用安装梁直接装在整车内。这样的设计在实现电池包轻量化的同时也提高了电池包在整车的连接强度,优点在于不受标准模组限制,并且能提高体积利用率和系统能量密度,同时散热效果要高于目前小模组电池包。
而比亚迪的“刀片电池”同样采用无模组电池包技术,即将电芯做成又长又薄的“刀片”形状,令磷酸铁锂电池的体积能量密度提升了50%;更重要的是,刀片电池长电芯结构与壳体及保护结构形成刚度较强的结构体,抗变形、耐挤压和穿刺的能力也更强,再加上在高风险安全位点全面使用了耐高温和具有优异绝缘性能的高温陶瓷涂层,使电池组内部发生短路的概率降至极低。
比亚迪内部人士告诉《电动大咖》,刀片电池在开发的过程中已经充分考虑了三项强制标准的各项要求。在用来模拟电池热失控、较难通过的针刺试验中,比亚迪刀片电池针刺点附近位置仅有较低程度的温升变化,未发生剧烈反映,基本杜绝了出现燃爆的可能,即使在极端情况下也仅有冒烟现象。这也意味着比亚迪刀片电池能够更好地通过《电动汽车用动力蓄电池安全要求》中增加的电池系统热扩散试验,为乘员预留安全逃生时间。
正如中国科学院院士欧阳明高所说,目前电动汽车动力电池的发展方向主要有3个方面,包括电池材料和电化学体系的创新;智能制造、智能回收等智慧电池的发展;电池设计和产品工程方面的创新方向。而“刀片电池”主要体现在“电池设计和产品工程方面的创新”。
毫无疑问,三项强制标准是我国电动汽车领域首批强制性国家标准,对提升新能源汽车安全水平、保障产业健康持续发展具有重要意义。值得一提的是,业界人士普遍认为,CTP电池和刀片电池还不是完全没有模组,而是使用了大模组的形式,但这还是意味着无模组电池进入了变革与发展的加速阶段,相信会有更电池企业跟进并带来更进一步的创新,为广大消费者带来价格更实惠、更安全的新能源汽车。
本文来源于汽车之家车家号作者,不代表汽车之家的观点立场。
F. 汽车电线绝缘要求
绝缘材料的选择主要是考虑耐热要求和机械强度。相比标准的电池电缆,可以合理选择比较软的材料,使特殊设计的绞合导体保持柔韧性。
和常规汽车电缆的基本差异是结构需要按额定电压600 V设计,而如果在商用车和公共汽车上使用,额定电压可高达1000 V以上。而目前由内燃机驱动的汽车使用的电缆被设计为额定电压60 V。
对于所有的绝缘材料,这么高的电压从来不是挑战。对于工业和民用电气系统,这仍然是低压。对于汽车用高压电缆,面临的挑战应是在热、机械性能。
由于电缆连接电池,逆变器和电动机,高压电缆需要传输高电流。根据系统组件的功率要求,电流可达到250A到450A。这么高的电流在常规驱动的车辆上是很难找到的。高电流传输的结果导致高功耗和组件的加热。因此高压电缆设计为承受较高的温度。目前可以看出对温度要求有进一步增加的趋势。
相比之下, 目前的车辆通常使用电缆的额定温度到105℃就足够了,只要是电缆不是用在发动机舱或其它耐较高的温度的区域。电动汽车高压电缆通常要高于这个温度,如C级(125℃)或D级(150℃)。电动汽车内如果通过的路由不利,如排气管附近,电机前面,电池背面等,主机厂甚至会提出更高的耐高温要求。如E级(175)℃。绝缘材料更高的耐热决定了电缆可以承载更高的额定载流量。
汽车行业通常在指定的温度等级电缆设计使用寿命为3000 h。在公认的电缆标准(如GB/T 25085、GB/T 25087,QC/T 1037和ISO 19642),此值通常用于长期老化试验。在高压应用领域的客户的特殊要求可能超过3000 h,在规定的温度累计运行时间甚至达到至12000 h。绝缘材料耐热和寿命成正比,越耐热的电缆可以承载更长的使用寿命。
电动汽车的开发在许多情况下面临的挑战是空间纳入了更多的电气组件。电缆和连接器通过路由也需要空间。通常会导致紧张的弯曲半径。由于常规电缆固有的设计,高弯曲力难以克服。为了解决这个问题,高压电缆高柔韧性是至关重要的。只有比较柔韧的设计,通过车辆的路由才可以容易实现。如果电动机位于靠近车辆的运动部位,然后导致连接的高压电缆连续振动,它要求被设计成能承受高的循环弯曲,以确保良好的弯曲耐力。
目前高压电缆的绝缘材料以交联聚烯烃和硅橡胶为主。交联聚烯烃的耐热最高可达D级,并具有很高的机械强度和耐液体化学品影响。可以设计的外径更精巧。对于D级交联聚烯烃通常做不到无卤,而硅橡胶有优异的耐热和柔韧性,环保无卤,是设计更高耐热E级高压电缆的首选材料。
因为高电压带来应用风险增加,按照标准要求,高压电缆必须在视觉上与普通汽车电缆区分,指定表面必须是鲜艳的橙色。
同时也可以印刷警示内容和特殊标记,如“ 小心!高压600 V”、高电压的闪电标识等。按照QC/T 414,橙色是专门用于额定电压 > AC 30 V/DC 60 V 的高压电线(电缆)的主色。为了区别高压电气系统的不同回路,允许使用纵向色条作为辅色。
首选的辅色颜色见表 1。护套电缆的辅色可以只加在缆芯芯线的绝缘上,并且可以作为主色。单芯护套电缆如果在护套上已经标识清楚,缆芯的绝缘也允许是本色(不着色)。
G. 电动汽车动力电池的绝缘功能是否要做到ASIL C
这个问题和你那个电解液泄漏差不多。
做不做取决于你的HARA里面分析出来的S,E,C的值是多少,如果达到9,那么必须做ASIL C的。
主要取决于客户的销售区间,以及你现在有的技术水平是什么样的。
H. 纯电动汽车动力电池系统,正极对地绝缘绝缘值大于多少为合格
一般检修时要测两个电阻。一个是正极对地绝缘和负极与电池外壳绝缘阻值,阻值大于40MΩ算合格。