丽驰电动汽车没有助力
㈠ 汽车方向有时没有电子助力是怎么回事
您看一看仪表板上的EPS故障指示灯有没有亮,如果亮,说明有故障,如果没有亮,而您明确感觉到方向有时没有电子助力的话,也是故障,因此建议您尽快去维修。电子助力系统失效后方向盘仍然可控制,但比平时的力量要大许多,特别是低速情况,要注意安全!
㈡ 汽车突然没有助力了
汽车助力有刹车助力、转向助力等,你具体是什么助力没有了啊?
㈢ 电动汽车突然方向盘没有助力,刹车硬刹不住车,喇叭仪表盘电动门等没有反应
建议去4S店检查一下各方面电路,如果是液压助力检查一下油路和油泵,仪表盘和电动门都没反应说明电路出行了问题。车载电脑没有工作。
㈣ 电动车没有助力了是怎么回事
电动车有两种方式前进:
1.电动车的电池启动马达前进。
(若这里没用,有三种情况:1.电池坏了2.马达坏了3.两个都坏了)
2.第一种是主的,第二种:人力。
电动车又称电动自行车,电动车唯一助力就是人踩。
(估计没有助力有两种:1.掉链2.齿轮卡死)
㈤ 汽车电子助力的方向盘无助力怎么解决
如果是电动的助力方向没有了,那么就要用电脑来读一下故障码,很有可能是扭矩传感器的问题。
转向助力是协助驾驶员作汽车方向调整,为驾驶员减轻打方向盘的用力强度,当然,助力转向在汽车行驶的安全性、经济性上也一定的作用。
就目前汽车上配置的助力转向系统和我能看到的资料,大致可以分为三类,
一种是 机械式液压动力转向系统;
一种是电子液压助力转向系统;
另外一种电动助力转向系统。
机械式液压动力转向系统
机械式的液压动力转向系统一般由液压泵、油管、压力流量控制阀体、V型传动皮带、储油罐等部件构成。
无论车是否转向,这套系统都要工作,而且在大转向车速较低时,需要液压泵输出更大的功率以获得比较大的助力。所以,也在一定程度上浪费了资源。可以回忆一下:开这样的车,尤其时低速转弯的时候,觉得方向比较沉,发动机也比较费力气。又由于液压泵的压力很大,也比较容易损害助力系统。
还有,机械式液压助力转向系统由液压泵及管路和油缸组成,为保持压力,不论是否需要转向助力,系统总要处于工作状态,能耗较高,这也是耗资源的一个原因所在。
一般经济型轿车使用机械液压助力系统的比较多。
电子液压助力转向系统
主要构件:储油罐、助力转向控制单元、电动泵、转向机、助力转向传感器等,其中助力转向控制单元和电动泵是一个整体结构。
工作原理:电子液压转向助力系统克服了传统的液压转向助力系统的缺点。它所采用的液压泵不再靠发动机皮带直接驱动,而是采用一个电动泵,它所有的工作的状态都是由电子控制单元根据车辆的行驶速度、转向角度等信号计算出的最理想状态。简单地说,在低速大转向时,电子控制单元驱动电子液压泵以高速运转输出较大功率,使驾驶员打方向省力;汽车在高速行驶时,液压控制单元驱动电子液压泵以较低的速度运转,在不至于影响高速打转向的需要同时,节省一部分发动机功率。
电动助力转向系统(EPS)
英文全称是Electronic Power Steering,简称EPS,它利用电动机产生的动力协助驾车者进行动力转向。EPS的构成,不同的车尽管结构部件不一样,但大体是雷同。一般是由转矩(转向)传感器、电子控制单元、电动机、减速器、机械转向器、以及畜电池电源所构成。
主要工作原理:汽车在转向时,转矩(转向)传感器会“感觉”到转向盘的力矩和拟转动的方向,这些信号会通过数据总线发给电子控制单元,电控单元会根据传动力矩、拟转的方向等数据信号,向电动机控制器发出动作指令,从而电动机就会根据具体的需要输出相应大小的转动力矩,从而产生了助力转向。如果不转向,则本套系统就不工作,处于standby(休眠)状态等待调用。由于电动电动助力转向的工作特性,你会感觉到开这样的车,方向感更好,高速时更稳,俗话说方向不发飘。又由于它不转向时不工作,所以,也多少程度上节省了能源。一般高档轿车使用这样的助力转向系统的比较多。
分享
㈥ 电动汽车没有方向助力刹车助力灯也不亮什么原因
车主你好,这种情况应该是助力电机控制模块出问题导致的,建议你及时去修理厂检查维修,希望可以帮到你,祝你生活愉快!【汽车有问题,问汽车大师。4S店专业技师,10分钟解决。】
如有疑问,请追问。
㈦ 汽车电动助力无效是什么原因
汽车上配置的助力转向系统类:
(1)一种是 机械式液压动力转向系统;(2)一种是电子液压助力转向系统;(3)另外一种电动助力转向系统。
一、机械式液压动力转向系统
无论车是否转向,这套系统都要工作,而且在大转向车速较低时,需要液压泵输出更大的功率以获得比较大的助力。所以,也在一定程度上浪费了资源。可以回忆一下:开这样的车,尤其时低速转弯的时候,觉得方向比较沉,发动机也比较费力气。又由于液压泵的压力很大,也比较容易损害助力系统。
还有,机械式液压助力转向系统由液压泵及管路和油缸组成,为保持压力,不论是否需要转向助力,系统总要处于工作状态,能耗较高,这也是耗资源的一个原因所在。一般经济型轿车使用机械液压助力系统的比较多。
二、电子液压助力转向系统
工作原理:电子液压转向助力系统克服了传统的液压转向助力系统的缺点。所采用的液压泵不再靠发动机皮带直接驱动,而是采用一个电动泵,所有的工作的状态都是由电子控制单元根据车辆的行驶速度、转向角度等信号计算出的最理想状态。简单地说,在低速大转向时,电子控制单元驱动电子液压泵以高速运转输出较大功率,使驾驶员打方向省力;汽车在高速行驶时,液压控制单元驱动电子液压泵以较低的速度运转,在不至于影响高速打转向的需要同时,节省一部分发动机功率。
三、电动助力转向系统(EPS)
汽车在转向时,转矩(转向)传感器会“感觉”到转向盘的力矩和拟转动的方向,这些信号会通过数据总线发给电子控制单元,电控单元会根据传动力矩、拟转的方向等数据信号,向电动机控制器发出动作指令,从而电动机就会根据具体的需要输出相应大小的转动力矩,从而产生了助力转向。如果不转向,则本套系统就不工作,处于standby(休眠)状态等待调用。由于电动电动助力转向的工作特性,会感觉到开这样的车,方向感更好,高速时更稳,俗话说方向不发飘。又由于不转向时不工作,所以,也多少程度上节省了能源。
㈧ 汽车方向突然没有助力是什么原因
汽车如果突然失去助力的话一般都是什么?如果带自动助力油的,那车子就是有可能助力油管破了,起不到助力的作用。希望以上意见能够帮助到你,仅供参考谢谢!
㈨ 方向电动助力没有助力了为甚么 啊!
我认为 电动助力转向系统(ElectronicPowerSteeringSystem,EPS)是汽车电子化发展的成果之一,在各国汽车制造业中得到了普遍重视。EPS属于一种动力转向系统,比传统动力转向系统具有更高的可控性,能较好地解决汽车转向“轻”和“灵”的矛盾,因此有广泛的应用前景[1]。对其进行性能仿真研究、建模及施加控制是两大关键问题[2]。基于ADAMS软件的虚拟样机技术,可把汽车视为一个由多个相互连接的、彼此能够相对运动的多体系统,其运动学及动力学仿真与以往通常用几个自由度的质量—阻尼刚体(振动)数学模型相比,计算描述能够更加真实地反映整车结构和整车性能,也比其他方法更为直接方便[3]。 由于EPS控制运算法则的复杂性和整车模型的自由度过多这两个原因,造成仅仅使用一种软件进行基于整车的EPS系统性能分析是比较困难的。本文以某多功能商务车为对象,采用ADAMS/Car建立整车系统多体动力学模型,在Matlab中建立EPS控制系统,应用MATLAB与ADAMS软件相联合,将电动助力转向控制系统与整车模型相结合,采ADAMS/Controls提供的接口使机械子系统和控制子系统之间形成一个闭合控制回路,进行机电一体化的复杂实时仿真。利用两种软件各自的优点,解决了整车模型自由度过多和EPS控制系统运算法则过于复杂,两者共处的问题,应用于实际,可以大大减少车辆控制系统的开发周期和成本。 一、整车多体模型 合适的车辆动力学模型是进行联合仿真的前提,建立的多体模型应能反映实车结构,为此在ADAMS/Car中建立车辆整体动力学系统模型,需遵循以下原则: (1)在建立动力学模型时尽量减少对重要部分的简化,在不影响系统精确程度的前提下对次要部分进行简化,尽量减少自由度数,提高求解效率。 (2)除了轮胎、阻尼元件、弹性元件、橡胶元件以外,其余零件认为是刚体,在仿真分析过程中不考虑它们的变形;簧载质量看作一个具有六个自由度的刚体。 (3)对于刚体之间的连接柔性作适当的简化,用线性弹性橡胶衬套(bushing)来模拟实际工况下的动力学特性;各运动副内的摩擦力忽略不计。 (4)由于发动机模块及制动系模块仅用于控制车速,本文采用了ADAMS/Car数据库中内置的发动机及制动系模块;同时动力传递系统进行相应简化,只考虑半轴以后的动力传递,即驱动力矩直接加在驱动半轴上。 使用ADAMS/Car创建的某商务车整车多体动力学模型如图1所示,由悬架、车身、转向、稳定杆、制动、传动、轮胎、动力总成等8个子系统组成。 (1)转向系主要包括方向盘、转向轴、转向管柱、转向传动轴、横拉杆、齿轮齿条转向器等。在ADAMS中按照相应的连接关系,加上相应的约束副即可构建完成。建立转向系模型时,应将转向柱断开为两部分,加一旋转副,保证它们之间可绕其轴向相对转动,并在断开处再加一扭簧(torsion),输入扭簧的刚度即可达到扭杆弹簧的效果,以便准确地测量出仿真过程中转向盘施加的转矩;在转向齿条上加一力元素,表示助力的大小,助力函数初始值设置为0,利用VARVAL函数实时读入MATLAB环境中EPS控制系统的计算值。 (2)车身系统:为简化建模,将车辆乘员同车身集成为一个模型,采用离散的质点代替连续体。车身模型由五部分组成:空载车辆质点、驾驶员质点、副驾驶员质点、乘员质点(4人)。通过定义副驾驶员质点和乘员质点的质量可以分别模拟1~6个乘员时的承载工况,通过定义各质点质心的位置可以模拟不同的质量分布。 (3)前桥及前悬架总成:前悬架为麦弗逊独立悬架,前桥为转向桥,前桥及前悬架总成主要由副车架、控制臂、车轮轴承、减振器、螺旋弹簧、传动轴、限位块和等转速万向节组成。 (4)后桥及后悬架总成:后桥为扭力梁式支持桥,采用非独立悬架,后桥及后悬架总成主要由后桥V形横梁、后滑柱总成、螺旋弹簧、双向作用筒式减振器、后轴纵臂、轮毂轴座和限位块组成。 (5)轮胎:研究分析的车辆轮胎型号为215/175R15,轮胎绕中心轴的转动惯量由三线摆实验测得为0.87kg·m2,轮胎模型采用UA模型,该模型所需参数较少,主要有:侧偏刚度、外倾刚度、垂直刚度、纵向刚度、滚动阻力系数和垂向阻尼系数等,这种轮胎模型比较适合进行理论分析。 二、EPS控制系统设计 电动助力转向系统的基本组成包括转矩传感器、车速传感器、电子控制单