新能源汽车铝合金应用
『壹』 新能源汽车哪些零部件使用铝合金
黄金铝壳预充电阻器
『贰』 铝合金在新能源汽车及大型飞机上的应用!!
铝合金是最常见的汽车用轻金属,而且在汽车上使用较早,相对比较成熟。现代轿车发动机活塞几乎都用铸铝,这是因为活塞作为主要的往复运动件要靠减重来减小惯性,减轻曲轴配重,提高效率,并需要材料有良好的导热性,较小的热膨胀系数,以及在350℃左右有较好的力学性能,而铸铝能符合这些要求。同时由于活塞、连杆采用了铸铝件,减轻了重量,从而减少发动机的振动,降低了噪声,使发动机的油耗下降,这也符合了汽车的发展趋势.
『叁』 铝合金的应用在退烧,高强度钢在发热
铝合金在欧洲乘用车单车的平均使用现状
DuckerFrontier在2019年10月发布了2019年欧洲乘用车铝合金使用现状及2025年预测报告。在这份报告里,DuckerFrontier统计了欧洲乘用车在2019年的单车铝合金平均使用量为179.2kg。这个数据高吗?当然是高,毕竟欧洲目前来说是最积极推进铝合金在汽车上使用的地区,这个数据基本上就代表了目前乘用车单车用铝的最高平均水平。
e-Tron的热管理和能量回收的投入显示对续航的提升效果更明显
这些综合的因素导致铝合金在车身的应用热潮在消退,而高强度钢的应用前景在升温。也因此,铝合金在车身的应用前景,从整体行业来看,出现大幅提升的可能性并不高。所以,对于DuckerFrontier预估的欧洲在2025年乘用车平均单车用铝会达到200kg,我保持怀疑的态度。
本文来源于汽车之家车家号作者,不代表汽车之家的观点立场。
『肆』 动力电池在新能源汽车中有哪些典型应用
动力电池可以分为两大类,即蓄电池和燃料电池,他们采用的是蓄电池动力电池外壳,蓄电池适用于纯新能源电动汽车,可以归类为铅酸蓄电池、镍基电池(镍一氢及镍一金属氢化物电池、镍一福及镍一锌电池)、钠?电池(钠一硫电池和钠一氯化镍电池)、二次锂电池、空气电池等类型。而燃料电池专用于燃料电池新能源汽车,可以分为碱性燃料电池(AFC)、磷酸燃料电池(PAFC)、熔融碳酸盐燃料电池(MCFC)、固体氧化物燃料电池(SOFC)、质子交换膜燃料电池(PEMFC)、直接甲醇燃料电池(DMFC)等类型。
动力电池组由多个电池串联叠置组成。一个典型的动力电池组大约有96个电池,充电到4.2V的锂离子电池而言,这样的电池组可产生超过400V的总电压。尽管汽车电源系统将动力电池组看作单个高压电池,每次都对整个动力电池组进行充电和放电,但动力电池控制系统必须独立考虑每个电池的情况。如果动力电池组中的一个电池容量稍微低于其他电池,那么经过多个充电/放电周期后,其充电状态将逐渐偏离其它电池。
如果动力电池的充电状态没有周期性地与其它电池平衡,那么它最终将进入深度放电状态,从而导致损坏,并最终形成电池组故障。为防止这种情况发生,每个动力电池的电压都必须监视,以确定充电状态。此外,必须有一个装置让电池单独充电或放电,以平衡这些电池的充电状态。
为了增加续航里程,新能源电动汽车需要大量的锂电池组合模块,每个模块都是由若干个电池盒组合而成,这样,每个电池盒的质量大小对整个电池模块的质量影响很大,为了减轻电池质量,采用铝合金材料来制作动力电池铝壳是必然的选择。
『伍』 铝合金的发展前景好吗
铝合金是工业中应用最广泛的一类有色金属结构材料,目前铝合金行业已发展成相对成熟的市场。在低碳经济成为大势所趋的今日,由于市场需求的增加以及铝加工技术的提高,铝在新能源汽车、高铁、船舶、航空等高端领域的应用也越来越广,铝的应用推广又多了一层特殊意义。
另一方面,我国与发达国家相比,在资源的拥有量、人均消费量等方面仍有不小的差距,铝产品的应用领域和市场空间潜力巨大。
据前瞻产业研究院《中国铝合金行业市场前瞻与投资分析报告》显示,2016年我国铝合金产量增长至749.8万吨。可见行业未来市场潜力巨大。
『陆』 功能材料在现代汽车上有哪些方面的应用
轮胎:橡胶。座椅:聚氨酯皮革。保险杠:ABS合金。汽车涂料:各种高分子树脂。比质子交换膜燃料电池有更高的转换效率和节能效果,可减少二氧化碳排放50%,不产生NOx,已成为发达国家重点研究开发的新能源技术。
主要优势:
基于现代社会对环保与安全的要求越来越高,世界汽车工业发达国家迅速开展了非石棉摩擦材料的研究开发,相继推出了非石棉的半金属型摩擦材料、烧结金属型摩擦材料、代用纤维增强或聚合物粘接摩擦材料、复合纤维摩擦材料、陶瓷纤维摩擦材料等,它们的共同特点是:
1)均没有石棉成分,而是采用代用纤维或聚合物作为增强材料;
2)增加了金属成分,以提高其使用湿度及寿命;
『柒』 汽车行业为什么逐渐使用金属铝来代替刚和铁作为汽车车身
汽车采用铝合金车身是由它的优 点所决定的。(1)经济性由于汽车制造中大量采用铝合金,使汽车总质量减轻,从而降低了 燃油的消耗;由于油耗低、质量轻,汽车的 废气排放就少,污染程度就下降。(2) 环保性废旧汽车的回收率高, 铝质汽车零件基本上都可回收,回收再生所 需能源少,并且铝可以多次循环再生,对其 性能来讲没有多大变化。(3) 防腐蚀性铝暴露在空气中很容 易在表面形成一层致密的氧化物,使铝材和 空气隔开,防止氧气的进一步腐蚀。(4) 加工性好铝材具有良好的塑性 和刚性,一定厚度的板材可以制造整车的有 关板件。(5) 安全性好铝材具有很高的吸能 特性,使它成为制造车身变形区的理想材 料,以增强车身的被动安全性。
『捌』 新能源汽车成功。和什么车底盘一样
自行车的零部件在早些时候,通过一定的改进,变成了汽车的底盘,比如滚动轴承、钢管构架、链传动等,但后来汽车行业不断发展,汽车的底盘的变化越来越大,当然这些都是差速器、摩擦片式离合器、齿轮变速器研究成功的结果,还采用了如万向节传动轴、充气轮胎、锥齿轮主减速器、后桥半独立悬架等等,来完善汽车底盘。相对于传统的汽车底盘,现代的汽车底盘发展已经趋于成熟,各方面的性能都得到良好提升。可是电子信息技术不断发展,给汽车底盘又带了更深层次的发展空间,为汽车在高科技领域的应用打好基础,创造出更安全更舒适更稳定的底盘技术。
1.1 现代汽车底盘电子化
随着各种汽车电子辅助功能在底盘上的应用明显提高了汽车的主动安全性和驾驶舒适性,这些系统包括ABS/ASR/ESP集成控制系统、自适应巡航控制系统(ACC)、泊车辅助系统(PLA)、车道偏离和驾驶员警示系统、胎压监测系统(TPMS)、可调阻尼控制系统(ADC)等。随着底盘电子控制系统越来越向电子化、智能化、网络化方向发展。
1.2 底盘零件新材料和新工艺的应用
汽车底盘在未来的发展方向之一便是汽车轻量化, 对于轻质合金材料和高强度钢的需求量在未来将会大大增加;底盘上对于铝合金的运用也会越来越多;镁合金的需求量也呈增长的态势。但是,也要不断研究一些新型设计来满足汽车零部件重量轻的需求。
底盘零件的稳定性就是汽车的安全基础,要做到强度、柔韧性、抗疲劳、抗损坏等性能,汽车车架和车桥对于管材液压成形技术的运用也会越来越频繁,压力加工技术向着高效、自动减轻汽车重量、降低成本等方向发展。底盘铸件正在向高性能、薄壁、轻质、精(确)尺寸、优良切削性能方向发展;铸造生产过程向清洁、废物再生、高效、节能、节材、环保的绿色铸造方向发展。底盘零部件的机械切削加工技术已经抛弃了传统模式,而发展为柔性技术为特点的生产线生产的生存模式。高效、精密、柔性化、自动化是切削加工技术变化的主要趋势。高速加工技术、敏捷制造技术、智能化加工技术、绿色加工技术等都将得到快速发展。汽车零件的防护性电镀由原来单一的镀锌钝化工艺,向耐蚀性能更好且具有耐热、低氢脆性、良好加工性能及环保性能的锌合金镀层及无铬达克罗工艺发展。在镀层的耐腐蚀性能获得很大提高的同时,正向镀层耐热性能好、低摩擦系数方向发展。在底盘领域,随着对环保要求的不断提高,目前,世界各大汽车公司正在集中开发环境友好的零件,如低滚动阻力轮胎、绿色轮胎、不含铅的车轮平衡块、不含六阶铬的新零件涂层技术、电动转向系统等,相信不久的将来,底盘技术一定会朝着保护环境的方向越走越广阔。
2 底盘设计要求
底盘设计考虑的关键在于满足整车性能的各项指标。汽车应当具备的基本性能可概括为动力性、经济性、制动性、操稳性、平顺性、安全性和耐久性。一般所说的底盘工程包括前后悬架、转向系、制动系和车轮的设计配置。与这些系统直接相关的整车性能有制动性、操稳性和平顺性。底盘的悬架部件本身要足够牢固,而其设计是否到位直接影响车架车身的受力大小,同时底盘设计也和耐久性相关。
3 新能源汽车底盘设计的完善
3.1 完善新能源汽车底盘设计需要注意的问题
要对新能源汽车底盘设计进行完善,就要从三个方面思考问题。
其一,汽车底盘设计平台的应用,即在底盘设计中,包括底盘设计的构架,以及其子系统都需要保持不变。
其二,传统发动机存在的弊端不少,可以将其取消,采用最新研发的转向系统和传动系统。要根据原有的框架对汽车底盘子系统进行适当的改进。例如,要保留子系统底盘设计的设计方案,要严格更换有问题的发动机。所以,对于底盘的设计来说,不仅要安装真空动力泵,还有适当调整构架,达到改善真空源的目的。当然,也要改变新的动力系统的减速器接口。在零部件设计完的基础上,还要用CAE分析法对悬置系统进行运用,达到减轻噪音的目的。
其三,车体后舱的布局会随着子系统采用的新的设计方案而改变,经过一系列对于荷载已经车的质量进行详细核算,保证悬架系统安全系数。不然,就要对子系统进行重设,这时候就要做好调整悬架系统的任务工作,分析新能源汽车的前轴荷的分布情况以及后轴荷的分布情况,会发现要重新设计悬架系统的参数。确定好悬架四轮定位参数,用Adams分析进行确定,但是最好尽量保证原有的设计方案,和实际相结合,这样可以有效节省开发周期,减小成本开发。
3.2 新能源汽车保持承载式车身
新能源汽车保持承载式车身,在于很多汽车都会采用这种设计。由于副车架并不能够承担车身质量的相关功能,因此,在动力总成部件的设计上,需要将悬置点确定下来。车身的悬置设计中,要对车身进行量化分析,可以采用CAE分析方法,可以在一定程度上避免由于悬置设计空间不规范而导致的总体布设困难。
3.3 新能源汽车运用非承载式车身
汽车车身采用非承载式设计,由于底盘可形成比较大的框架而使得底盘的承载力增强,其中可以布设全部的动力系统。所以,在新能源汽车设计的初期,就要规划好进行部件,不仅可以提高总体布置的简易程度,而且随着车身重心的降低而使得车身的整体质量有所减轻。