当前位置:首页 » 新型汽车 » sic器件在电动汽车上

sic器件在电动汽车上

发布时间: 2021-12-28 14:22:17

㈠ 光伏SiC碳化硅功率元器件谁有做

目前,以MOSFET、IGBT、晶闸管等为代表的主流功率器件在各自的频率段和电源功率段占有一席之地。
功率MOSFET的问世打开了高频应用的大门,这种电压控制型单极型器件,主要是通过栅极电压来控制漏极电流,因而它有一个显著特点就是驱动电路简单、驱动功率小,开关速度快,高频特性好,最高工作频率可达1MHz以上,适用于开关电源和高频感应加热等高频场合,且安全工作区广,没有二次击穿问题,耐破坏性强。缺点是电流容量小,耐压低,通态压降大,不适宜大功率装置。目前MOSFET主要应用于电压低于1000V,功率从几瓦到数千瓦的场合,广泛应用于充电器、适配器、电机控制、PC电源、通信电源、新能源发电、UPS、充电桩等场合。
IGBT综合了MOSFET和双极型晶体管的优势,有输入阻抗高,开关速度快,驱动电路简单等优点,又有输出电流密度大,通态压降下,电压耐压高的优势,电压一般从600V~6.5kV。IGBT优势通过施加正向门极电压形成沟道,提供晶体管基极电流使IGBT导通,反之,若提供反向门极电压则可消除沟道,使IGBT因流过反向门极电流而关断。比较而言,IGBT开关速度低于MOSFET,却明显高于GTR;IGBT的通态压降同GTR接近,但比功率MOSFET低很多;IGBT的电流、电压等级与GTR接近,而比功率MOSFET高。由于IGBT的综合优良性能,已经取代GTR,成为逆变器、UPS、变频器、电机驱动、大功率开关电源,尤其是现在炙手可热的电动汽车、高铁等电力电子装置中主流的器件。

㈡ 电动汽车上的逆变器是什么

新能源汽车有别于传统燃油车最核心的技术就是“三电”——电驱,电池,电控。其中逆变器这个器件在电动汽车领域已经变得举足轻重,没有它电动车根本跑不起来,并且逆变器的性能直接影响着电动车的价格,那么这个小东西到底是干什么用的,下面就了解一下。
先普及一下三电和DC、AC的基础知识:
其中,电驱由三部分构成:传动机构、电机、逆变器。
简单介绍一下AC、DC:
交流电AC的特点:大小和方向都发生周期性变化。交流电在生活民用电压220V、通用工业电压380V,都属于危险电压。它的最基本的形式是正弦电流,我国交流电供电的标准频率规定为50Hz。
直流电DC的特点:方向不随时间发生改变。直流电一般被广泛使用于手电筒(干电池)、手机(锂电池)等各类生活小电器等。干电池(1.5V)、锂电池、蓄电池等被称之为直流电源,都低于24V。
我们想要真正了解逆变器的作用,就得先知道车载动力电池的原理。
新能源汽车能够跑起来是因为电机带动了车轮,而电机的电量来自于电池,但动力电池是以直流电存储,电机使用的是交流电。交流电机必须依靠正弦波交流电才能驱动旋转。但车载动力电池能够输出的是直流电,逆变器的作用就是把直流电转换成正弦波交流电,并且它还控制着交流电机的转速和扭矩。所以,要想把DC转变AC运转,就要靠逆变器。
所以,对于配备交流感应电机的电动车,必须通过逆变器,把电池包输出的高压直流电转换成可控制幅值和频率的正弦波交流电,才能驱动车辆行驶。
正弦波的获得是通过方波演变而来的。首先了解一下方波的形成。请看电路图,这个神奇的电路叫做Full Bridge Inverter,全桥逆变电路。它的结构很简单,由四个开关(S1-S4)组成。A和B为电路输出端的正负极。
通过开关控制,电流的流向发生了逆转,通过不断闭合开关,方型交流电就产生了。我们日常的家用220V电源频率为50Hz这就意味着每分钟需要开关100次。如此高的频率没有人能控制得了,所以需要接入场效应管,例如IGBT或MOSFET,这个电子元件可以实现每分钟上千次的开关。
通过场效应管的开关控制,可以获得我们所需要的方波,但我们要的是正弦波。这里就涉及到了一个技术名词——脉宽调制。
当前,我们已经按照固定的频率开闭开关形成了方波,如果将开关的频率在需要更大的地方产生更大的脉冲…如下图。
试想一下,如果我们对单位时间的脉冲求得平均值,它就会变成?
这是一条很接近与正弦曲线的图形,脉冲越精确,切换的频率越高,所得的曲线就越光滑。我们可以通过比较器进行对脉冲串的调制就能获得平滑的正弦波曲线。
还有一种方法叫做重电压逆变技术——在电路当中增加电容和电感的方式用于平滑曲线。电容用于平滑电压曲线,电感用于平滑电流曲线。就好比在电路上增加了一个小容量的水库(二级缓存),电容就相当于一个可以瞬间充放电的电池,它能吸收电压脉冲,让输出曲线变得平滑。以上所说的只有一组电压就能实现正弦波的输出,如果用多组电压进行调制,就能获得精度更高的正弦波曲线,并且控制精度也更加精准。这种方法多用于风力发电机或电动汽车。
简单来说,逆变器(Power Inverter)是一种能够将 DC12V直流电转换为和市电相同的 AC220V交流电,供一般电器使用,是一种方便的车用电源转换器。若一台电动汽车的逆变器能支持较高电压,则相应的电压充电流较大,功率较大,这意味着同样电流进行充电,充电功率可以等比例放大,即充电时间会缩短。
若提高逆变器的支持电压,则相应的充电时逆变器产生的热量会变多,那么就需要解决逆变器中IGBT模块的散热问题,这是提高充电效率的关键问题,目前日本丰田对此研究较深入,例如其加硅碳技术的应用。
此外,逆变器性能的好坏直接决定电机的性能表现,也是各大新能源汽车企业的核心技术。所以逆变器技术的掌握和突破就如同燃油车时代的变速箱技术一样,将会成为新能源汽车产品的核心技术。随着新一代半导体功率器件的发展,可以看出,IGBT和SiC是未来电机控制系统和充电桩的主力干将。
IGBT在电力驱动系统中属于逆变器模块,将动力电池的直流电逆变成交流电提供给驱动电动机。它约占新能源汽车电机驱动系统及车载充电系统成本的40%,其性能直接决定了整车的能源利用率。
SiC功率器件的损耗是Si器件的50%左右,主要用于实现电动车逆变器等驱动系统的小量轻化。
一提到纯电动汽车,大多数人第一反应都是特斯拉,尤其是最近特斯拉的频繁动作,让其知名度变得更高,那么特斯拉到底好在哪,为什么就是比国产纯电动汽车受欢迎?下面的视频介绍了特斯拉的充电原理,一起学习一下。

10:23

㈢ 碳化硅SiC器件目前主要有些品牌在做

很多行业都有再用碳化硅呀

1.太阳能逆变器

太阳能发电用二极管的基本材料,碳化硅二极管的各项技术指标均优于普通双极二极管(silicon
bipolar)技术。碳化硅二极管导通与关断状态的转换速度非常快,而且没有普通双极二极管技术开关时的反向恢复电流。在消除反向恢复电流效应后,碳化硅二极管的能耗降低70%,能够在宽温度范围内保持高能效,并提高设计人员优化系统工作频率的灵活性。

2.新能源汽车充电器

碳化硅二极管通过汽车级产品测试,极性接反击穿电压提高到650V,能够满足设计人员和汽车厂商希望降低电压补偿系数
的要求,以确保车载充电半导体元器件的标称电压与瞬间峰压 ,之间有充足的安全裕度 。二极管的双管产品 ,可最大限度提升空间利用率,降低车载充电器的重量。

3.开关电源优势

碳化硅的使用可以极快的切换,高频率操作,零恢复和温度无关的行为,再加我们的低电感RP包,这些二极管可以用在任向数量的快速开关二极管电路或高频转换器应用。

4.工业优势

碳化硅二极管:重型电机、工业设备主要是用在高频电源的转换器上,可以带来高效率、大功率、高频率的优势。

㈣ Sic电驱动系统能给新能源汽车市场带来哪些变化呢

随着电气化时代的到来,汽车界也掀起了一场极大的变革。而随着新能源车型技术成熟度越来越高,轻量化,小型化,高效化也成为了电力驱动系统最主要的研究和发展方向。而SiC芯片的出现也引发了广泛的关注,国内外厂商纷纷开始抢先布局和研发。那么这种SiC芯片究竟有何神奇之处,又能给新能源汽车市场带来怎样的变化呢?

首先,SiC是一种复合半导体材料,主要用于电子领域,可以实现电力的转换和控制作用。并且由于SiC能够承受更大的击穿场强并且导热系数更高,所以也被广泛的应用在高压电子领域,例如电源,逆变器等。而如果将这种材料巧妙的应用在电动汽车充电装置当中,就能够生产出强度更高,更耐高压的电驱系统了。

综上来看,SiC芯片在电动汽车领域还是有着很大发展潜力的,如果供应商能够降低生产成本,那么SiC功率半导体将会引发又一轮新能源汽车革命。

本文为汽车观察家原创,如有抄袭将依法追究法律责任。

(运营人员:博洋)

本文来源于汽车之家车家号作者,不代表汽车之家的观点立场。

㈤ 比亚迪的IGBT真的很牛

就像华为的海思芯片,近两年,汽车行业内的IGBT逐渐为人所熟知。
新能源汽车的成本构成中,最大头当然是动力电池,第二高的就是IGBT(Insulated Gate Bipolar Transistor,绝缘栅双极型晶体管)。作为与动力电池电芯齐名的“双芯”之一,占整车成本约5%左右的IGBT,正在变得越来越重要。
IGBT能有多重要?就在于,它能直接控制驱动系统直、交流电的转换,决定电动车扭矩和最大输出功率等核心指标,可谓“牵一发而动全身”。
所以,近日总投资10亿元的比亚迪IGBT项目在长沙正式动工,无疑就非常令人瞩目。据悉,该项目设计年产25万片8英寸晶圆的生产线,投产后可满足年装50万辆新能源汽车的产能需求。
如今,比亚迪IGBT芯片晶圆的产能已经达到5万片/月,预计2021年可达到10万片/月,一年可供应120万辆新能源车,也就是相当于2019年新能源汽车销量的总数。
不过,我们关心的是,对于比亚迪来说,其IGBT技术达到了什么程度?在整个IGBT格局中,比亚迪处于一个什么位置?
打破垄断
作为一种功率半导体,IGBT应用非常广泛,小到家电、大到飞机、舰船、交通、电网等战略性产业。此外,IGBT还是国家“02专项”的重点扶持项目,已经全面取代了传统的Power MOSFET,被称为电力电子行业里的“CPU”。
在新能源领域,IGBT的应用也非常重要。比如,在电动汽车的“三电”方面,TESLA的Model S使用的三相异步驱动电机,其中每一相的驱动控制需要使用28颗塑封的IGBT芯片,三相共需要使用84颗IGBT芯片。算算总量,就可知需求的庞大。此外,充电桩的核心部件也要用到IGBT芯片。
但是,长期以来,被垄断在少数IDM(Integrated device manufacturer)手上,比如英飞凌Infineon、富士电机、三菱等外资企业。
数据显示,2019年期间,英飞凌为国内电动乘用车市场供应62.8万套IGBT模块,市占率达到58%。而比亚迪供应了19.4万套,市占率达到18%。可以说,如果没有比亚迪,中国车规级IGBT芯片市场国内企业一直被“卡脖子”的局面无法缓解。这是实情。
比亚迪打破国际巨头的垄断,是值得高兴的事。不过,值得注意的是,如果按照之前2019年比亚迪IGBT自供比率约在70%(或以上)的预测,也就是接近15万套来算,对外供应的量也就是4万多套,比亚迪还是相当保守的。
所以,4月14日比亚迪宣布通过整合公司半导体业务、成立独立的“比亚迪半导体有限公司”,就是想使IGBT业务量扩大,提升其商业前景。根据中金公司的预计,比亚迪半导体拆分上市后市值可达300亿元,无疑也只有外供IGBT才能带来如此效益。
按照2018年的相关统计,在一辆纯电动汽车中,IGBT约占驱动电机系统成本的一半,而驱动电机系统占整车成本的15~20%,也就是说IGBT占整车成本的7~10%。而据中信证券报告显示,IGBT目前在插电混动车型上约占2500~3500元成本,A级以上纯电动车IGBT单车成本在2000~4000元,豪华车相对高一点,在5000元以上。
而且,中信证券认为,全球电动车高增长(尤其是A级以上车型)将带动IGBT需求放量,2020年行业空间约97亿元,预计2025年有望达到370亿元,年复合增长率超过30%。所以说,如果比亚迪IGBT销量扩大,收益当然可观。
据悉,比亚迪下一步的规划是让IGBT的外供比例争取超过50%。而之前比亚迪的孤单,显示出关键零部件领域自主品牌的技术弱势,现在局面有所缓解。不过,如果我们从国际IGBT技术发展趋势来看,比亚迪还得加快步伐。
竞争的格局
之前,比亚迪已经在秦、唐等多个车型中采用自主研发的IGBT,但直到2018年9月,才第一次对外宣布。从专利数量来说,截至2018年11月,比亚迪在该领域累计申请IGBT相关专利175件,其中授权专利114件。
截至目前,比亚迪车用IGBT装车量已累计超过60万只。如果我们光看比亚迪的报道,自豪感会油然而生。但是,放眼望去,比亚迪面对的都是强手。
从IGBT的应用电压来看,汽车主要是600V到1200V之间,这个区间里英飞凌Infineon具有压倒性优势,安森美虽然在600V-1200V领域也有市场,但主要是非车载领域。而三菱和富士电机瓜分了日本市场,丰田混动所用的IGBT全部内部完成,有自己完整的IGBT生产供应链。
江山代有才人出,除了这几家巨头,根据IHS Markit的最新报告,一家2018年度IGBT模块全球市场份额占有率排名第8位、唯一进入世界排名TOP10的中国企业——斯达半导(603290),也已成为比亚迪的劲敌。
根据上市刚刚两个月的斯达半导的年报,其去年生产的车规级 IGBT 模块已经配套了超过 20 家车企,合计配套超过16万辆新能源汽车(而根据NE时代的统计,2019年斯达供应了17,129套IGBT模块,市占率1.6%。)如果加上在工业控制及电源行业、变频白色家电及其他行业的应用,斯达半导的IGBT营收已经超过了比亚迪半导体。
不仅如此,就IGBT技术实力来看,比亚迪发展到了IGBT 4.0(相当于国际第五代),而斯达半导已经发展到了第六代,该公司基于第六代Trench Field Stop技术的650V/750V IGBT 芯片及配套的快恢复二极管芯片,已在新能源汽车行业实现应用。
从全球看,IGBT目前已经发展到7.5代,第7代由三菱电机在2012年推出,三菱电机目前的水平可以看作7.5代,而比亚迪2018年12月12日才发布IGBT 4.0技术(也就是国际上第五代技术),所以说,目前的差距还是很大的。
差距有多大?
不过,IGBT技术目前接近封顶也是公认的。当今科技日新月异,IGBT的战场之外,下一代争夺将在SiC(碳化硅)技术上。丰田汽车就表示过:“SiC具有与汽油发动机同等的重要性。”
其实,碳化硅(SiC)是一种广泛使用的老牌工业材料,1893年已经开始大规模生产了。作为第三代半导体材料,发展潜力巨大。而且,SiC技术已经在日本全面普及,无论三菱这样的大厂还是富士电机、Rohm这样的小厂,都有能力轻松制造出SiC元件。
鉴于SiC的重要性,丰田的策略是完全自主生产。实际上,丰田从上世纪80年代就开始了SiC的研究,领先全球30年。到2014年,丰田已经能试产关键的SiC基板。
?
这里说句题外话,SiC基板是关键,而落后日本企业很多的英飞凌,2016年7月决定收购的美国CREE集团旗下电源和RF部门(“Wolfspeed”),核心就是SiC基板技术。不过,最终被美国的外国投资委员会(CFIUS)以关系到国家安全的原因否了。
目前,比亚迪也已研发出SiC MOSFET。预计到2023年,比亚迪将采用SiC基半导体全面替代硅基半导体,这样的话,整车性能在现有基础上可以再提升10%。除了驱动效率提高,SiC MOSFET体积可以减少70~80%,这也是业内公认的,SiC是新能源车提高效率最有效的技术。
当然,光芯片提升还不行,整合材料(高纯碳化硅粉)、单晶、外延、芯片、封装等SiC基半导体全产业链也要跟进,才能进一步降低SiC器件的制造成本,加快其在电动车领域的应用。
所以,从技术上来说,比亚迪要追赶的路还很长。而且相对于斯达半导的全球化业务,比亚迪IGBT的国外业务还有待展开。不过相比较而言,比亚迪在国内自主品牌中还是取得了一定的优势,就像华为手握芯片终极武器一样。面对汽车行业百年未有之变局,技术驱动将重新构建行业格局,无疑是没错的。
文/王小西
---------------------------------------------------------------------------
【微信搜索“汽车公社”、“一句话点评”关注微信公众号,或登录《每日汽车》新闻网了解更多行业资讯。】
本文来源于汽车之家车家号作者,不代表汽车之家的观点立场。

㈥ 博世碳化硅功率器件首次对外亮相

日前,博世碳化硅功率器件首次对外亮相。

该器件能够在实现高开关频率的同时,保持较低的能量损耗和较小的芯片面积,并增加电动汽车和混动汽车6%的续航里程。

博世方面表示,其位于德国的第二家芯片工厂将于2021年投产。预计到2025年,碳化硅将随着产量的增加,成本会与IGBT模块持平。

本文来源于汽车之家车家号作者,不代表汽车之家的观点立场。

㈦ ROHM的SiC功率元器件被应用于UAES的电动汽车车载充电器

全球知名半导体制造商ROHM(总部位于日本京都市)的SiC功率元器件(SiCMOSFET*1)被应用于中国汽车行业一级综合性供应商——联合汽车电子有限公司(.,Ltd.,总部位于中国上海市,以下简称“UAES公司”)的电动汽车车载充电器(OnBoardCharger,以下简称“OBC”)。UAES公司预计将于2020年10月起向汽车制造商供应该款OBC。

<术语解说>

*1)MOSFET(Metal-Oxide-的缩写)

金属-氧化物-半导体场效应晶体管,是FET中最常用的结构。用作开关元件。

*2)IGBT(,绝缘栅双极晶体管)

同时具有MOSFET的高速开关特性和双极晶体管的低传导损耗特性的功率晶体管。

*3)传导损耗、开关损耗

因元器件结构的缘故,MOSFET和IGBT等晶体管在使用时会产生损耗。传导损耗是电流流过元器件时(ON状态时),受元器件的电阻分量影响而产生的损耗。开关损耗是切换元器件的通电状态时(开关动作时)产生的损耗。

本文来源于汽车之家车家号作者,不代表汽车之家的观点立场。

㈧ 解释电力电子器件si产品和sic的区别

SI器件和SIC器件的比较两者主要是性能不同。

SiC是什么?

碳化硅(SiC)是一种Ⅳ-Ⅳ族化合物半导体材料,具有多种同素异构类型。其典型结构可分为两类:一类是闪锌矿结构的立方SiC晶型,称为3C或 β-SiC,这里3指的是周期性次序中面的数目;另一类是六角型或菱形结构的大周期结构,其中典型的有6H、4H、15R等,统称为α-SiC。与Si相比,SiC材料具有更大的Eg、Ec、Vsat、λ。大的Eg使SiC可以工作于650℃以上的高温环境,并具有极好的抗辐射性能。

相比于Si器件,SiC功率器件的优势:

作为一种宽禁带半导体材料,SiC对功率半导体可以说是一个冲击。这种材料不但击穿电场强度高、热稳定性好,还具有载流子饱和漂移速度高、热导率高等特点。具体来看,其导热性能是Si材料的3倍以上;在相同反压下,SiC材料的击穿电场强度比Si高10倍,而内阻仅是Si片的百分之一。SiC器件的工作温度可以达到600℃,而一般的Si器件最多能坚持到150℃。

因为这些特性,SiC可以用来制造各种耐高温的高频大功率器件,应用于Si 器件难以胜任的场合。以SiC肖特基二极管为例,它是速度最快的高压肖特基二极管,无需反向恢复充电,可大幅降低开关损耗、提高开关频率,适用于比采用硅技术的肖特基二极管高得多的操作电压范围,例如,600V SiC肖特基二极管可以用在SMPS中,300V SiC肖特基二极管可以用作48~60V快速输出开关电源的整流二极管,而1,200V SiC肖特基二极管与硅IGBT组合后可以作为理想的续流二极管。

采用硅材料的MOSFET在提高器件阻断电压时,必须加宽器件的漂移区,这会使其内阻迅速增大,压降增高,损耗增大。阻断电压范围在1,200~1,800V的硅MOSFET不仅体积大,而且价格昂贵。IGBT虽然在高压应用时可降低导通功耗,但若开关频率增加时,开关功耗亦随之增大。因此IGBT在高频开关电源上亦有其本身的限制。而用SiC做衬底的MOSFET,可轻易做到1,000~2,000伏的MOSFET,其开关特性(结电容值,开关损耗,开关波型等)则与100多伏的硅MOSFET相若,导通电阻更可低至毫欧值。在高压开关电源应用上,完全可取代硅IGBT并可提高系统的整体效率以及开关频率。

价格差异:

单就Si器件和SiC器件的价差来看,确实有较大的差异,但如果从SiC器件带来的系统性能提升来看,将会发现其带来的总体效益远远超过两类器件的价差。在SiC特别适合的高压应用中,如果充分发挥SiC器件的特性,这一整体优势表现得非常明显。

㈨ 博世碳化硅功率器件首次亮相 能够提升6%的续航里程

车家号的网友,大家好!今天选车网为您带来博世碳化硅功率器件的最新消息,请点击关注选车网,第一时间了解最新的汽车资讯。

选车君观点:新能源汽车的续航里程一直都是消费者十分关注的问题,也是制约新能源汽车发展的关键因素,而博世的碳化硅功率器件能够有效地缓解用户的续航里程焦虑,为消费者提供更出色的驾乘体验。

本文来源于汽车之家车家号作者,不代表汽车之家的观点立场。

㈩ 什么是SiC器件,它的优点和缺点

的器件是有优点和缺点的

热点内容
禧玛诺21速山地车价格 发布:2025-07-09 14:42:23 浏览:475
新18迈锐宝内饰改装 发布:2025-07-09 14:34:33 浏览:483
吉利英伦海景汽车价格 发布:2025-07-09 14:34:32 浏览:85
2018启辰T70X内饰 发布:2025-07-09 14:28:38 浏览:260
不同级别的消费者对车价的反应新华信 发布:2025-07-09 14:25:12 浏览:412
华阳摩托车越野赛 发布:2025-07-09 13:57:40 浏览:392
去吧皮卡丘7星装备合成秘诀 发布:2025-07-09 13:48:44 浏览:235
爱我就别想太多豪车什么车 发布:2025-07-09 13:45:03 浏览:693
四驱升顶小型房车 发布:2025-07-09 13:44:54 浏览:640
世博园时光房车营地 发布:2025-07-09 13:11:49 浏览:330