电动汽车的电池散热控制
『壹』 电动汽车的电池温度过高是什么原因造成的
发动机水温过高,通常是在半路发生,我曾发生过开锅现象,把我自己如何处理的经过描述一下。有一次,我驾驶车辆外出,半路下起小雨,我驾驶的车辆没有水温表,突然间前挡风玻璃正常情况下,发动机有一套冷却系统来维持发动机正常的工作温度,如果冷却系统发生了故障,发动机就有可能导致高温。下面根据冷却系统的原理来分析可能导致发动机高温的原因:
汽车水温偏高风扇常转是不正常的,有可能是节温器开度不够、水泵工作不良或冷却液温度传感器信号失准等。为了保护发动机,控制散热风扇运转。发动机散热不良与散热器、散热器风扇、水泵、节温器有直接关系。现在很多中高级车使用了电子水泵,双节温器、双循环冷却系统,影响发动机散热的因素更多。检查散热器相对来说比较简单
『贰』 电池散热用哪几种方式
1.自然冷却
所谓自然冷却就是电池包没有额外的装置进行换热,完全靠周围环境来平衡电池包的热量。其最大的优点就是结构简单,成本低。当然缺点就是散热性能较弱。
图示是第一代Leaf车型的电池包,采用的就是自然冷却方式。可以看到采用这种冷却方式的电池包外观较为规整封闭,除了电流接口外没有其它多余通口。
图示为最新一代Leaf车型的电池包,从结构可以看到日产新一代Leaf车型依然采用了散热能力最弱最被动的自然冷却。
根据搜集到的资料推断,之所以选择这样的散热方式,是因为日产Leaf车型采用了散热性优良的软包电池,其有信心不采用风冷或水冷结构。但从现在的结果来看,显然日产的判断出现了偏差。
两代车型虽然电池包的外部尺寸几乎相同,但电池包容量从第1代的24kWh提升到40kWh,能量密度提升了1.6倍。
在电池能量密度大幅提升的情况下,日产依旧选用自然冷却方式显然有些冒险。一般情况下,在小容量小功率输出的车型中,这种冷却方式较为常见。
2.风冷
风冷采用空气作为换热介质。常见的有两种,一种是被动风冷,直接采用外部空气换热。第二种则为主动风冷,可预先对外部空气进行加热或冷却后再进入电池系统,相比之下第二种风冷形式冷却效率会更高。
这种电池组冷却方式在早期的电动乘用车应用广泛,如起亚Soul EV,在现阶段这种冷却方式在乘用车上用得越来越少,目前更多是用在电动巴士、电动物流车上。
用于冷却电池组的气流可由风扇产生,或者通过车辆行驶撞风产生。图示为起亚Soul EV车型的透视图,可以看到电池组上方布置有气流通道用来给电池组散热。
通过车辆下方进气口进入的空气,一部分通过电池组上方的进气口流入到电池组散热通道内,经由排气口排出车外,从而达到冷却电池组的目的。
这种冷却方式能够在成本控制和电池性能维护方面取得一个比较好的平衡,当然这种冷却方式也存在着缺点,比如不能很好的维持电池单体性能的一致性。随着电池性能的不断提升,对冷却要求越来越高,这种冷却方式正在逐步被淘汰。
3. 水冷
水冷一般是采用专门的冷却液作为换热介质。水冷技术是基于液体热交换的冷却技术,比风冷技术效率更高,电动汽车电池组内部温度更均匀,其可与车辆的冷却系统整合在一起。国外对水冷技术研究较早,应用时间也较长,目前大多数外国品牌电动汽车都采用了水冷散热。
相比自然冷却和风冷,水冷散热效率更高,对电池组的温度控制更为精确,能够很好地保证电池组的一致性。当然,缺点就是结构会更为复杂,成本也会大幅提升,对于电动车来说,车体重量对于车辆续航影响较大,水冷技术由于冷却液和相关部件的增加无疑会增加电池包的总体重量,这也是不可忽视的一个劣势。
国外主流汽车厂商在自家电动车型上基本都采用了水冷方式对电池温度进行控制。
我们熟悉的液冷散热车型有特斯拉、雪佛兰沃蓝达、吉利帝豪EV等。
我们以通用集团下的雪佛兰Bolt EV车型为例,其电池包就采用了水冷冷却技术,电池包除了必备的电流接口外,还布置有冷却液接口。常见的冷却液是乙二醇。
在电池包的内部,除了电池模组外,还布置有冷却板,其内部流动的冷却液会带走电池产生的热量,从而达到控制电池组温度的目的。
一般而言,电池冷却板“照顾”的是电池模组,但是通用集团已经应用上了电芯级冷却技术。冷却板直接和电芯接触,毫无疑问,这样的冷却方式效率会更高,同时电池单体性能一致性会更好。
冷却片的厚度仅为0.2mm,在冷却片上均匀分布着导流槽,冷却液可在里面流动,能确保电池处于最适宜的工作温度。
4.直冷
直冷技术利用制冷剂(R134a等)蒸发潜热的原理,在整车或电池系统中建立空调系统,将空调系统的蒸发器安装在电池系统中,制冷剂在蒸发器中蒸发并快速高效地将电池系统的热量带走,相比冷却液而言换热效率可提升三倍以上。
『叁』 电动汽车电池温度检测方法
车囧技师回答你:现在电动汽车上使用的高压蓄电池是有很多块锂电池串并联在一起的。一般有48块左、右组成一个有360伏直流电压的蓄电池,由于锂电池需要在一定的温度下才能正常,因此必须在每块电池里装有一个温度传感器检测蓄电池的工作温度,当温度过高时可降低电流输出或通过散热系统散热,高压蓄电池是有一个管理控制模块ECU。
『肆』 电动汽车里面的电池组是怎么散热的
目前主要的方式分三种:第一是没有热管理系统,也就是不刻意让电池散热,采用自然降温的方式,这些电池在制造工艺等方面都比较先进,比如Leaf电动车。第二种是采用风冷:主要有通过电池包内循环降温散热和通过外部风扇通风降温,其中前者占绝大部分,后者比较少。第三种是水冷或者别的液体介质降温,不是很常见
『伍』 电动汽车对充电电池为何要做到温度控制,从而保证性能一致
低速电动汽车锂电池
由于锂电池性能受温度影响大,锂电池最佳使用温度是25度,每降低1度锂电池容量下降0.8%,如果是到了冬天锂电池的容量就下降的更快了,假如冬天的气温是0度,那么锂电池容量将会下降20%,所以需要控制锂电池的温度,保证锂电池的最佳性能以及续航里程。如果是购买锂电池,先看看其使用的电芯是不是A品,电芯的质量决定这电瓶的质量,如容量和能量密度等,好的BMS也是衡量锂电池性能的一个指标,其次找个大厂家出品的锂电池,生产工艺成熟,售后有保障,锂电池的参考价1250元/KW.h。由于低速电动四轮车的续航里程还是比较有限的,如果想要增加其续航里程,可以装上一台增程器,以此来增加其续航里程,增加其活动范围,满足大众日常出行需求,实现出行往返自如,不再因半途没电而举步维艰。
增程器使用建议:
增程器在电量是满格的时候不推荐启动,一般建议在电量只有30%-40%的时候启动是最佳的。满电量的时候启动是没有什么特别好的效果的,为了环境友好,建议在需要的时候启动增程器,电池污染比废气污染更严重,保护电池就是保护环境。不建议在电池没有一点电的情况下使用,增程器启动的时候是电启动,在电池一点电都没有的时候启动可能会打不着火。
『陆』 动力电池是电动汽车的核心 那么如何给电动汽车动力电池散热
动力电池是电动汽车的核心,耐高温和防水及受得冻。电动汽车出现车开不动,第一时间会想到“核心”(电池)出了问题,那在夏天高温天气下,动力电池能够受得了这高温吗?
如何给电动汽车动力电池散热?动力电池工作电流大,产热量大,同时电池包处于一个相对封闭的环境,就会导致电池的温度上升。这是因为锂电池中的电解质,电解质在锂电池内部起电荷传导作用,没有电解质的电池是无法充放电的电池。
锂电池大部分是易燃、易挥发的非水溶液组成,这个组成体系相比水溶液电解质组成的电池有更高的比能量和电压输出,符合用户更高的能量需求。因为非水溶液电解质本身易燃、易挥发,浸润在电池内部,也形成了电池的燃烧根源。
因此上述两种电池材料的工作温度都不得高于60℃,但现在室外温度已接近40℃,同时电池本身产热量大,将导致电池的工作环境温度上升,而如果出现热失控,情况将十分危险了。为了避免变成“烧烤”,给电池散热就尤为重要了。
动力电池的电池包散热有主动和被动两种,两者之间在效率上有很大的差别。被动系统所要求的成本比较低,采取的措施也较简单。主动系统结构相对复杂一些,且需要更大的附加功率,但它的热管理更加有效。不同导热界面材料的传热介质的散热效果不同,空冷和液冷各有优劣。
采用气体(空气)作为导热绝缘材料传热介质的主要优点有:结构简单,质量轻,有害气体产生时能有效通风,成本较低;不足之处在于:与电池壁面之间换热系数低,冷却速度慢,效率低。目前应用较多。采用液体作为传热介质的主要优点有:
与电池壁面之间换热系数高,冷却速度快;不足之处在于:密封性要求高,质量相对较大,维修和保养复杂,需要水套、换热器等部件,结构相对复杂。在实际的电动大巴应用中,由于电池组容量大、体积大,相对来讲功率密度比较低,因此多采用风冷方案。而对于普通乘用车的电池组,其功率密度则要高得多。相应的,它对散热的要求也会更高,所以水冷的方案也更加普遍。
不同的电池包结构传感器会根据测温点和需求来定。温度传感器会被放置在最具代表性、温度变化幅度最大的位置,例如空气的进出口位置以及电池包的中间区域。特别是最高温和最低温处,以及电池包中心热量累积较厉害的区域。这样有助于将电池的温度控制在一个相对安全的环境,避免过热和过冷对电池造成危险。
『柒』 如何对电动汽车动力电池散热方法在这
那我分享下GLPOLY导热硅胶片XK-P25在新能源汽车电池包上动力电池上的成功应用。
新能源汽车这两年是有发光又发热,新闻里是关于新能源汽车的利好政策,朋友圈是振奋人心的新能源汽车大单。很有幸,GLPOLY的导热硅胶片XK-P25也是搭载这一波新能源的好政策,结结实实的应用在了各大品牌的新能源汽车电池包里面,帮助新能源电池包更好的做热传导使者。
GLPOLY的导热硅胶片XK-P25,是一款柔软度非常好、压缩量可达到50%以上的导热硅胶片,刚好在汽车电池包里面,需要的就是压缩量大,可以最大化的实现有效接触面积的导热硅胶片,XK-P25导热硅胶片完美的匹配了这一需求,而且汽车工作时是连续抖动震动的,导热硅胶片XK-P25的柔软度,刚好可以起到减震、缓冲的效果,并且紧紧的贴合在热源与散热器之间,保证了汽车运动中的热传导有效可靠性。
GLPOLY的导热硅胶片XK-P25热阻低,比同导热系数的普通导热硅胶片,热阻更低,并且可靠性更好。分享个经典案例就是,宇通大巴的一个电池包散热,最开始选择了三款导热系数(客户实测)一样的导热硅胶片做验证,刚开始一周数据显示,三款导热硅胶片的温升相差在3度以内,这个3度也是客户正常的考查范围,皆可接受,本来客户还想着既然三款导热硅胶片热传导效果差不多,是不是可以以价格进行招标,结果在这期间,实验室数据一直照常记录,2个星期后,招标程序还没走完,实验数据却发生了比较大的变化,在另外两款材料数据波动频繁的情况下,GLPOLY的导热硅胶片XK-P25表现的异常稳定,简直可以说是XK-P25导热硅胶片有点太淡定了,整个一个月的数据下来,波动浮动非常小,几乎等同一条直线(个别点微调),这个结果让客户惊讶不已,也帮助客户果断了做了一个决定,至少要保证8年以上寿命的汽车,可靠性可想而知,选择GLPOLY的XK-P25导热硅胶片似乎更能让客户安心。接下来的结果可想而知,GLPOLY的导热硅胶片XK-P25被写进了BOM表,并且是唯一的料号。距离现在,已经连续大批量出货一年有余,而且不断在新项目、其他品牌的案子中成功应用。
『捌』 比亚迪电动汽车 电池热管理资料
1、比亚迪E6纯电动车铁电池技术的优点
(1)、 超长寿命,长寿命铅酸电池的循环寿命在300次左右,最高也就500次,而磷酸铁锂动力电池,循环寿命达到2000次以上,标准充电(5小时率)使用,可达到2000次。同质量的铅酸电池是“新半年、旧半年、维护维护又半年”,最多也就1—1.5年时间,而磷酸铁锂电池在同样条件下使用,将达到7-8年。综合考虑,性能价格比将为铅酸电池的4倍以上。
(2)、 使用安全,磷酸铁锂完全解决了钴酸锂和锰酸锂的安全隐患问题,钴酸锂和锰酸锂在强烈的碰撞下会产生爆炸对消费者的生命安全构成威胁,而磷酸铁锂以经过严格的安全测试即使在最恶劣的交通事故中也不会产生爆炸。
(3)、 可大电流2C快速充放电,在专用充电器下,1.5C充电40分钟内即可使电池充满,起动电流可达2C,而铅酸电池现在无此性能。
(4)、 耐高温,磷酸铁锂电热峰值可达350℃—500℃而锰酸锂和钴酸锂只在200℃左右。工作温度范围宽广(-20C--+75C),有耐高温特性磷酸铁锂电热峰值可达350℃—500℃而锰酸锂和钴酸锂只在200℃左右。
(5)、 无记忆效应。可充电池在经常处于充满不放完的条件下工作,容量会迅速低于额定容量值,这种现象叫做记忆效应。像镍氢、镍镉电池存在记忆性,而磷酸铁锂电池无此现象,电池无论处于什么状态,可随充随用,无须先放完再充电。
(6)、 绿色环保。该电池不含任何重金属与稀有金属(镍氢电池需稀有金属),无毒(SGS认证通过),无污染,符合欧洲RoHS规定,为绝对的绿色环保电池证。铅酸电池中却存在着大量的铅,在其废弃后若处理不当,仍将对环境够成二次污染,而磷酸铁锂材料无论在生产及使用中,均无污染,因此该电池又列入了“十五”期间的“863”国家高科技发展计划,成为国家重点支持和鼓励发展的项目。随着中国加入WTO,中国电动自行车的出口量将迅速增大,而现在进入欧美的电动自行车已要求配备无污染电池。
2、比亚迪E6纯电动车铁电池技术存在缺陷
(1)、 导电性差、锂离子扩散速度慢。高倍率充放电时,实际比容量低,这个问题是制约磷酸铁锂产业发展的一个难点。磷酸铁锂之所以这么晚还没有大范围的应用,这是一个主要的问题。但是,导电性差目前已经得到比较完美的解决:就是添加C或其它导电剂。目前在实际生产过程中通过在前驱体添加有机碳源和高价金属离子联合掺杂的办法来改善材料的导电性(A123、烟台卓能正采用这种方法),研究表明,磷酸铁锂的电导率提高了7个数量级,使磷酸铁锂具备了和钴酸锂相近的电导特性。实验室报道当0.1C充放电时,可以达到165mAh/g以上的比容量,实际达到135-145mAh/g,基本接近钴酸锂的水平;但是锂离子扩散速度慢的问题到目前仍然没有得到较好的解决,目前采取的解决方案主要有纳米化LiFePO4晶粒,从而减少锂离子在晶粒中的扩散距离,再者就是掺杂改善锂离子的扩散通道,后一种方法看起来效果并不明显。纳米化已经有较多的研究,但是难以应用到实际的工业生产中,目前只有A123宣称掌握了LiFePO4的纳米化产业技术。
(2)、 振实密度较低。一般只能达到0.8-1.3,低的振实密度可以说是磷酸铁锂的很大缺点。所有磷酸铁锂正极材料决定了它在小型电池如手机电池等没有优势,所以其使用范围受到一定程度的限制。即使它的成本低,安全性能好,稳定性好,循环次数高,但如果体积太大,也只能小量的取代钴酸锂。但这一缺点在动力电池方面不会突出。因此,磷酸铁锂主要是用来制作动力电池。
(3 )、 磷酸铁锂电池低温性能差。尽管人们通过各种方法(例如锂位、铁位、甚至磷酸位的掺杂改善离子和电子导电性能,通过改善一次或二次颗粒的粒径及形貌控制有效反应面积、通过加入额外的导电剂增加电子导电性等)改善磷酸铁锂的低温性能,但是磷酸铁锂材料的固有特点,决定其低温性能劣于锰酸锂等其他正极材料。一般情况下,对于单只电芯(注意是单只而非电池组,对于电池组而言,实测的低温性能可能会略高,这与散热条件有关)而言,其0℃时的容量保持率约60~70%,-10℃时为40~55%,-20℃时为20~40%。这样的低温性能显然不能满足动力电源的使用要求。当前一些厂家通过改进电解液体系、改进正极配方、改进材料性能和改善电芯结构设计等使磷酸铁锂的低温性能有所提升,但还未真正满足需求。
( 4)、 电池存在一致性问题。单体磷酸铁锂电池寿命目前超过2000次,但电池组的寿命会大打折扣,有可能是500次。因为电池组是由大量单体电池串并而成,其工作状态好比一群人用绳子绑在一起跑步,即使每个人都是短跑健将,如果大家的动作一致性不高,队伍就跑不快,整体速度甚至比跑得最慢的单个选手的速度还要慢。电池组同理,只有在电池性能高度一致时,寿命发挥才能接近单体电池的水平。而在现有的条件下,由于种种原因,制作出来的电池一致性不佳,进而影响到电池的使用性能和整体寿命,因此应用在动力汽车上存在一定障碍。
『玖』 新能源汽车电池需要散热吗
动力电池是新能源电池的核心,电池隔膜的作用也很重要,主要是在狭小空间内将电池正负级板分隔开来,防止两极接触造成短路,却能保证电解液中的离子在正负极之间自由通过。因此,隔膜就成了保证锂离子电池安全稳定工作的核心材料。
电解液是为了隔绝燃烧来源,隔膜是为了提高耐热温度,而散热充分则是降低电池温度,避免积热过多引发电池热失控。如果说电池温度急剧升高到300℃,即使隔膜不融化收缩,电解液自身、电解液与正负极也会发生强烈化学反应,释放气体,形成内部高压而爆炸,所以采用适合的散热方式至关重要。
动力电池包风冷结构散热方式
1、在电池包一端加装散热风扇,另一端留出通风孔,使空气在电芯的缝隙间加速流动,带走电芯工作时产生的高热量;
2、在电极端顶部和底部各加上导热硅胶垫片,让顶部、底部不易散发的热量通过TIF导热硅胶片传导到金属外壳上散热,同时硅胶片的高电气绝缘和防刺穿性能对电池组有很好的保护作用。
动力电池包液冷结构散热方式
1、电芯的热量通过导热硅胶片传递至液冷管,由冷却液热胀冷缩自由循环流动将热量带走,使整个电池包的温度统一,冷却液强大的比热容吸收电芯工作时产生的热量,使整个电池包在安全温度内运作。
2、导热硅胶片良好的绝缘性能和高回弹韧性,能有效避免电芯之间的震动摩擦破损问题,和电芯之间的短路隐患,是水冷方案的最佳辅助材料。
动力电池包自然对流散热方式
1、此类电池组空间大,与空气接触良好,裸露部分能通过空气自然换热,底部不能自然换热部位通过散热器散热,导热硅胶片填充散热器与电池组中间空隙,导热、减震、绝缘。
2、加热片方案多应用于新能源汽车市场,启动前的电池预热加热片的热量通过导热硅胶片将热量传递给电池组,预热电池、导热硅胶片有良好的导热性能、绝缘性能、耐磨性能,能有效传热和防护电池组与加热片之间摩擦产生的磨损、短路等。
『拾』 电动汽车,铅酸电池,能装,电池,保温,散热,系统吗
目前所以的电池都存在低温容量降低的现象。低温后电池活性降低,不仅放电电流小,而且充电电流也会减小,充电时间也会延长。所有电动汽车在环境温度过低时都会启动加热程序。把电池温度升高后充电!电动汽车这个加温的方案有两种:一种是液体循环加热方式,一种是通过热风对流加热!
电瓶容量标定时是在环境温度为25度时进行的,当环境温度每下降一度,电瓶容量也会相应下降0.5-1%左右。所以有些新能源汽车在高寒地区冬季续航里程会缩水一半以上!目前部分新能源汽车带有电池加温系统,但大多数只局限在充电时,外接电源插入时系统会一直保持加温继而恒温的状态下,使电池保持一定温度。拔下充电插头后加温程序结束。
参照电动汽车加温的方式,电动车也可以设计成类似的加温装置。简单来说就是把电瓶装在一个保温箱内。保温箱内部采用电阻丝加热(电热毯原理),然后在电池组中间加装温控器,可以设定在20-25度之间。低于20度启动加热,25度时停止加热。当电瓶温度上升到20度左右时充电器开始充电。只要电源不拿下来,那么一直保持恒温状态。但也只是一种设想,受到电动车电池空间限制,加温装置也很难装上去。而且保温装置保温时间有限制,也可以考虑像保温饭盒一样,内部有热水袋一样的结构。在外面停放过久时可以取出水袋,重新加热水!但是实施起来都比较麻烦!