电动汽车功率与扭矩输出曲线
① 电动的汽车和燃油车在动力上有没有差距
我相信很多习惯开燃油车的车主开电动车的时候都有些不舒服。这主要是因为纯电动车和燃油车的驾驶感受不同。其实除了发动机和电机的区别,变速箱的使用也有很大的差距。目前市场上的纯电动汽车只装一档变速箱,燃油车可以装AT、CVT、DCT等各种变速箱。正是因为变速箱的不同,消费者在试驾时会有完全不同的体验。那为什么燃油车热衷的变速箱只在电动车上安装一档变速箱呢?燃油车之所以需要变速箱,是基于自身的先天不足。要解释这一点,必须看发动机的特性。根据发动机特性曲线分析,低速时不能输出扭矩,高速时汽车最大输出扭矩会减小。
汽车发动机大功率运转时间比电动发动机长很多,长时间运转功率更高!内燃机可以长时间大功率工作,但电机实际功率小,不能保证长时间大功率输出。而且电动车受电池容量限制,不可能长时间大功率工作。但大部分汽车不需要长期大功率输出,电机完全可以满足汽车的动力需求。而且电机最大的特点就是低速大扭矩。即使发动机和电机扭矩相同,电机的动力性能也比发动机好。动力来得早,只要转动就能发挥最大扭矩。但发动机的最大扭矩需要转速来支撑,达到一定转速才能发挥最大扭矩。所以在动力性能方面,尤其是加速前半段,电动车动力性能更好。
② 汽车的功率,马力,转速,扭矩,互相是个什么关系各自又对汽车性能是个什么影响
马力是功率的单位,
发动机的输出功率和扭矩会随转速的上升而发生变化(可参考发动机转速输出曲线图),
一般买车的时候厂家都会提供发动机的最大功率、扭矩及其产生的转速给用户参考,
一般发动机在达到最大功率或扭矩前都会有一个随转速快速上升的过程,
这部分转速是我们真正开车的时候要经常用到的部分。
至于对汽车性能的影响,
这个其实是比较复杂的话题,
因为还有很多其他因素的限制,
同时汽车性能也是多方面的,
简单理解可以这样:
功率在其他条件相同的前提下基本上决定了汽车的最高速度,
扭矩在其他条件相同的前提下基本上决定了汽车的加速度。
③ 电动汽车电机做工时降低转速增大扭矩会省电吗
从电机的功率/扭矩输出曲线可以看出,在最大功率转速时,电机处于最大扭矩恒定输出状态,且在最大功率转速之前,转速越低,输出功率越小。功率小就意味着能耗低,所以对于电动机来说,转速越低,电耗就越低。
在最大功率转速之前,电动机的效率是最高的。一旦过了最大功率转速,放电功率始终处于恒定的最大值,而扭矩随着转速的提升不断减小,导致需要更多的电能来维持高速转速,所以最大功率转速之后电机的效率会随转速的升高而减小,能耗由此不断增加。
④ 电动汽车有哪几种工况各种工况对于扭矩的需求
为什么电动汽车扭矩大,汽车扭矩是发动机从曲轴端输出的力矩。在功率固定的条件下它与发动机转速成反比关系,转速越快扭矩越小,反之越大,反映了汽车在一定范围内的负载能力。
扭矩知识介绍--定义
最大扭矩一般出现在发动机的中、低转速的范围,随着转速的提高,扭矩反而会下降。扭矩的单位是牛顿·米(N·m)或公斤·米(kg·m)。
发动机的最大扭矩与发动机的进气系统、供油系统和点火系统的设计有关,在某一转速下,这些系统的性能匹配达到最佳,就可以达到最大扭矩。另外,发动机的功率、扭矩和转速是相关联的,具体关系为:功率=K×扭矩×转速,其中K是转换率。选择发动机时也要权衡一下怎样合理使用、不浪费现有功能。比如,北京冬夏都有必要开空调,在选择发动机功率时就要考虑到不能太小;只是在城市环路上下班交通用车,就没有必要挑过大马力的发动机。尽量做到经济、合理选配发动机。
以上就是小编给大家介绍的为什么电动汽车扭矩大,扭矩和功率一样,是汽车发动机的主要指数之一,它反映在汽车性能上,包括加速度、爬坡能力等。它的准确定义是位矢(L)和力(F)的叉乘(M),物理学上指使物体转动的力乘以到转轴的距离,它能表示发动机所输出的力的大小(因为发动机中曲轴的半径一定)。
⑤ 需要电动汽车的电动机工况图,包括功率和扭矩的
这是典型的电机外特性曲线。
电机开始段是恒转矩区,到基速点后,为恒功率区间。
另外,与内燃机不同的是,在散热系统和供电系统能保障的情况下,
他可以有短时间的爆发力,称之为峰值特性,一般在30秒到60秒上下。
⑥ 汽车的扭矩和功率分别是什么意思决定了汽车的什么性能
汽车驱动理论 马力与扭力哪一项最能具体代表车辆性能?有人说「起步靠扭力,加 速靠马力」,也有人说「马力大代表极速高,扭力大代表加速好」,其实这些都是片段的错误解释,其实车辆的前进一定是靠引擎所发挥 的扭力,所谓的「扭力」在物理学上应称为「扭矩」,因为以讹传讹的结果,大家都说成「扭力」,也就从此流传下来,为导正视听, 本文以下皆称为「扭矩」。 扭矩的观念从小学时候的「杠杆原理」就说明过了,定义是「垂直方向的力乘上与旋转中心的距离」,公制单位为牛顿-米(N-m),除以重力加速度 9.8m/sec2之后,单位可换算成国人熟悉的公斤-米(kg-m)。英制单位则 为磅-呎(lb-ft),在美国车的型录上较为常见,若要转换成公制,只要将lb-ft的数字除以7.22即可。 汽车驱动力的计算方式: 将扭矩除以车轮半径即可由引擎马力-扭力输出曲线图可发现,在每一个转速下都有一个相对的 扭矩数值,这些数值要如何转换成实际推动汽车的力量呢?答案很简单,就是「除以一个长度」,便可获得「力」的数据。举例而言,一 部1.6升的引擎大约可发挥15.0kg-m的最大扭力,此时若直接连上185/ 60R14尺寸的轮胎,半径约为41公分,则经由车轮所发挥的推进力量为15/0.41=36.6公斤的力量(事实上公斤并不是力量的单位,而是重量的单位,须乘以重力加速度9.8m/sec2才是力的标准单位「牛顿」)。 36公斤的力量怎么推动一公吨的车重呢?而且动辄数千转的引擎转速更不可能恰好成为轮胎转速,否则车子不就飞起来了?幸好聪明的人类发明了「齿轮」,利用不同大小的齿轮相连搭配,可以将旋转的速度降低,同时将扭矩放大。由于齿轮的圆周比就是半径比,因此从小齿轮传递动力至大齿轮时,转动的速度降低的比率以及扭矩放大的倍数,都恰好等于两齿轮的齿数比例,这个比例就是所谓的「齿轮比」。 举例说明,以小齿轮带动大齿轮,假设小齿轮的齿数为15齿,大齿轮的齿数为45齿。 当小齿轮以3000rpm的转速旋转,而扭矩为20kg-m时,传递至大齿轮的转速便降低了1/3,变成1000rpm;但是扭矩反而放大三倍,成为60kg-m。这就是引擎扭矩经由变速箱可降低转速并放大扭矩的基本原理。 在汽车上,引擎输出至轮胎为止共经过两次扭矩的放大,第一次由变 速箱的档位作用而产生,第二次则导因于最终齿轮比(或称最终传动 比)。扭矩的总放大倍率就是变
⑦ 新能源汽车爬坡怎么样
爬坡性能非常好。
爬坡的性能好坏主要看动力源的扭矩。
电动车的电机在低转速起步的时候具有扭矩大的特别,比发动机要大不少。所以爬坡性能非常好。
下图是特斯拉的功率和扭矩曲线,从中可以看到实线部分是最大扭矩,能够覆盖很长一段速度区域(根据图示大概是0~40几mph,也就是0~65公里每小时左右),这就是电动机的特性。
举个例子长安奔奔EV一个微型车,电机的扭矩能够达到170Nm,而且能够覆盖较长速度区间。而反观本田雅阁2.0L,这个中级车的2.0发动机只能在4300转时爆发190Nm的扭矩,也就是说一个微型电动车的扭矩就基本上与一个中级汽油车的最大扭矩相当了,而且还能覆盖一个比较长的速度区间。
因此电动车普遍的爬坡性能要比汽油车好。
⑧ 汽车发动机扭矩和功率与发动机性能好坏的关系谢谢各位
马力与扭力哪一项最能具体代表车辆性能?有人说「起步靠扭力,加 速靠马力」,也有人说「马力大代表极速高,扭力大代表加速好」,其实这些都是片段的错误解释,其实车辆的前进一定是靠引擎所发挥 的扭力,所谓的「扭力」在物理学上应称为「扭矩」,因为以讹传讹的结果,大家都说成「扭力」,也就从此流传下来,为导正视听,
本文以下皆称为「扭矩」。
扭矩的观念从小学时候的「杠杆原理」就说明过了,定义是「垂直方向的力乘上与旋转中心的距离」,公制单位为牛顿-米(N-m),除以重力加速度 9.8m/sec2之后,单位可换算成国人熟悉的公斤-米(kg-m)。英制单位则 为磅-呎(lb-ft),在美国车的型录上较为常见,若要转换成公制,只要将lb-ft的数字除以7.22即可。
汽车驱动力的计算方式:
将扭矩除以车轮半径即可由引擎马力-扭力输出曲线图可发现,在每一个转速下都有一个相对的 扭矩数值,这些数值要如何转换成实际推动汽车的力量呢?答案很简单,就是「除以一个长度」,便可获得「力」的数据。举例而言,一 部1.6升的引擎大约可发挥15.0kg-m的最大扭力,此时若直接连上185/ 60R14尺寸的轮胎,半径约为41公分,则经由车轮所发挥的推进力量为15/0.41=36.6公斤的力量(事实上公斤并不是力量的单位,而是重量的单位,须乘以重力加速度9.8m/sec2才是力的标准单位「牛顿」)。
36公斤的力量怎么推动一公吨的车重呢?而且动辄数千转的引擎转速更不可能恰好成为轮胎转速,否则车子不就飞起来了?幸好聪明的人类发明了「齿轮」,利用不同大小的齿轮相连搭配,可以将旋转的速度降低,同时将扭矩放大。由于齿轮的圆周比就是半径比,因此从小齿轮传递动力至大齿轮时,转动的速度
降低的比率以及扭矩放大的倍数,都恰好等于两齿轮的齿数比例,这个比例就是所谓的「齿轮比」。
举例说明,以小齿轮带动大齿轮,假设小齿轮的齿数为15齿,大齿轮的齿数为45齿。
当小齿轮以3000rpm的转速旋转,而扭矩为20kg-m时,传递至大齿轮的转速便降低了1/3,变成1000rpm;但是扭矩反而放大三倍,成为60kg-m。这就是引擎扭矩经由变速箱可降低转速并放大扭矩的基本原理。
在汽车上,引擎输出至轮胎为止共经过两次扭矩的放大,第一次由变 速箱的档位作用而产生,第二次则导因于最终齿轮比(或称最终传动 比)。扭矩的总放大倍率就是变速箱齿比与最终齿轮比的相乘倍数。举例来说,手排六代喜美的一档齿轮比为3.250,最终齿轮比为4.058,而引擎的最大扭矩为14.6kgm/5500rpm,于是我们可以算出第一档的最 大扭矩经过放大后为14.6×3.250×4.058=192.55kgm,比原引擎放大了13倍。此时再除以轮胎半径约0.41m,即可获得推力约为470公斤。然而上述的数值并不是实际的推力,毕竟机械传输的过程中必定有磨 耗损失,因此必须将机械效率的因素考虑在内。
论及机械效率,每经过一个齿轮传输,都会产生一次动力损耗,手排变速箱的机械效率约在95%左右,自排变速箱较惨,约剩88%左右,而传动轴的万向接头 效率约为98%,各位自己乘乘看就知道实际的推力还剩多少。整体而 言,汽车的驱动力可由下列公式计算:
扭矩×变速箱齿比×最终齿轮比×机械效率
驱动力= ————————————————————
轮胎半径(单位为公尺)
马力亦非「力」乃「功率」的一种
了解如何将扭矩经由变速箱的齿比放大成为实际推力之后,接着可以研究什么叫做「马力」。马力其实也不是一种「力」,而是一种功率 (Power)的单位,定义为单位时间内所能做「功」的大小。尽管如此,我们不得不继续使用「马力」这个名字,毕竟已经用太久了,讲「功率」恐怕没几个消费者听得懂?
功率是由扭矩计算出来的,而计算的公式相当简单:功率(W)=2π× 扭矩(N-m)×转速(rpm)/60,简化计算后成为:功率(kW)=扭矩(N-m) ×转速(rpm)/9549,详细的推导请参看方块文章。然而功率kW要如何 转换成大家常见的「马力」呢,这又有一段故事得讲。
英制或公制?
1PS=735W;1hp=746W
马力定义竟然不一样!
谈到引擎的马力,相信不少人会直觉地想到什么DIN、SAE、EEC、JIS等等不同测试标准,到底这些标准的差异在哪儿,以后有空再研究;有点夸张的是由于英制与公制的不同,对「马力」的定义基本上就不一样。英制的马力(hp)定义为:一匹马于一分钟内将200磅(lb)重的物体拉动165英呎(ft),相乘之后等于33,000ft-lb/min;而公制的马力(PS)定义则为一匹马于一分钟内将75公斤的物体拉动60公尺,相乘之后等于4500kg-m/min。经过单位换算,(1lb=0.454kg;1ft=30.48cm)竟然发现1hp=4566kg-m/min,与公制的1PS=4500kg-m有些许差异,而如果以功率W(1W=1Nm/sec= 9.8kgm/sec)来换算的话,可得1hp=746W;1PS=735W两项不一样的结果。
同样是「马力」,英制马 力与公制马力的定义竟然不一样!难道英国马比较「有力」吗?
到底世界上为什么会有英制与公制的分别,就好像为什么有的汽车是右驾,有的却是左驾一样,是人类永远难以协调的差异点。若以大家 比较熟悉的几个测试标准来看,德国的DIN与欧洲共同体的新标准 EEC还有日本的JIS是以公制的PS为马力单位,而SAE使用的是英制的 hp为单位,但为了避免复杂,本刊一率将马力的单位标示为hp。近来,越来越多的原厂数据已改提供绝对无争议的KW作为引擎输出的功率数值。
不过话说回来,1PS与1hp之间的差异仅1.5%,每一百匹马力差1.5匹,差异并不大。一般房车的马力多半仅在200匹马力以下,两者由于定义的差异也仅3匹马力左右,因此如果您真要「马马计较」,就把SAE 标准的数据多个1.5%吧!不过SAE、JIS、DIN、EEC各种测试标准之 间亦有些许差异,这个老问题已经争论过很多次了,单位之间不能真正划上等号,然而在差别不怎么多的情况之下,就当作相同吧!因此 管他是PS或hp,都差不多可以视为相等。
终于可以做结论了!将上述获得的马力与功率换算方式代入功率与扭矩的换算公式,并且将扭矩的单位换算为大家熟悉的kg-m之后,可得下列结果:
英制马力hp=扭力(kg-m)×引擎转速(rpm)/727
公制马力PS =扭力(kg-m)×引擎转速(rpm)/716
知道这些公式之后有什么用呢?从「马力hp=扭力×转速/727」看来, 如果能增加引擎转速,扭力不变的情况下,便能增加马力。例如若能 将转速从6000rpm增加到8000rpm,等于增加了33%,但因为凸轮轴的 限制使得8000rpm时的扭力下降了10%,则仍能使马力增加19.7%,这 说明了时下改装计算机的为何能在解除断油后大幅增加马力。
所以不要被「增加??匹马力」的广告所著魔。
让我们从另外一个角度来想:如果在同样的转速下,增加20匹马力,代表能增加多少推力呢?以最大扭力点发挥于5000rpm的情况下,将公式稍微变换一下,可发现增加的扭力=20hp×727/ 5000rpm=2.9kgm。再将这个结果代入汽车驱动力的公式,同样以喜美 的一档计算,2.9×3.250×4.058/0.41=93公斤。对于一吨重的车身而言,影响似乎也不怎么大;再者如果相差5匹马力的话,推力更仅增加23公斤,可见相差5匹马力,根本也没差多少,所以能「增加5匹马力」的产品,到底应该花多少钱去改装,您自个儿会拿捏了吧?
大马力决定真性能!
到底大马力的车子跑得快,还是大扭力的车子跑得快?从公式可以知 道大马力的原因是「高转速的时候仍保有高扭力数值」,也就是说要 有大马力,不只是低转速的扭力要好,连高转速的扭力都得继续维持 ,这表示扭力与马力的争论根本是多余的,只要能做到高马力,除了表示各转速区域的扭力都很大之外,更代表材料技术的优越性,将活塞、进排气阀门的材质与重量予以强化与轻量化,才能将引擎转速提高。
扭矩与功率的换算公式推导
假设一圆的半径为r(单位为m),扭矩为T(单位为N-m),则圆周上切线 方向的力F=T/r,由于功率的定义为「每秒钟所作的功」,对于圆周?动而言,每旋转一圈所作的功为:F×圆周总长2πr 将F=T/r代入计算,每一圈所作的功Work=F×2πr=(T/r)×2πr=2πT
再乘上引擎转速rpm就是每分钟所作的功,但功率P的单位是N-m/sec ,所以需除以60,转换成每秒所作的功。代入公式:P=T2πrpm/60,将常数整理后,则可得P(kW)=Trpm/9545。
由上文可见,一台车的动力由发动机传输到车轮,需要经过多组齿轮因此有所损耗,如果德制马力测的是传递到车轮上的动力,那么同样发动机用在不同车型上的动力输出应该不同,试拿bmw330和bmw530做比较,其功率均是225hp/5900rpm;结论,要么bmw在数据上造假,要么它测的是发动机输出净值。
⑨ 扭矩与功率之间的关系
扭矩和功率的关系:功率P=扭矩×角速度ω
因为功率P = 功W ÷ 时间t,功W = 力F × 距离s,所以P = F×s/t = F×速度v。这里的v是线速度,而在引擎里;
曲轴的线速度v = 曲轴的角速度ω×曲轴半径r;
代入上式得:功率P=力F×半径r×角速度ω;
而力F × 半径r=扭矩,故得出:功率P=扭矩×角速度ω。
所以引擎的功率能从扭矩和转速中算出来。
(9)电动汽车功率与扭矩输出曲线扩展阅读
扭矩是使物体发生转动的一种特殊的力矩。发动机的扭矩就是指发动机从曲轴端输出的力矩。
在功率固定的条件下它与发动机转速成反比关系,转速越快扭矩越小,反之越大,它反映了汽车在一定范围内的负载能力。
外部的扭矩叫转矩或者叫外力偶矩,内部的叫内力偶矩或者叫扭矩。
扭矩(Torque,也称为转矩)在物理学中就是特殊的力矩,等于力和力臂的乘积,国际单位是牛米N·m;
此外还可以看见kg·m、lb-ft这样的扭矩单位,由于G=mg,当g=9.8的时候,1kg的重力为9.8N,所以1kg·m=9.8N·m;
而磅尺lb-ft则是英制的扭矩单位,1lb=0.4536kg;1ft=0.3048m,可以算出1lb-ft=0.13826kg·m。
⑩ 汽车加速与功率和扭矩的关系
扭矩也好、功率也好,其实都是引擎因燃烧汽(柴)油与空气的混合物、将化学能转变为热能、再转变为动能所发出的力道。既然指的是同一具引擎,那怎么可能发出二种力道呢?对的,一具引擎只会发出一种力道,扭矩也好、功率也罢,都只是我们解释的角度。也就是对引擎发出之力道运用方式的不同所产生的不同解释,如此而已。 为什么对同一股力道,会要有二种不同的解释呢?答案是当运用的场合不同时,力道的表现方式和大小就会有所不同,而这,就是扭矩与功率的差别。幻想一下,如果站在您面前的,是体重超过300磅的美国职篮NBA高手“奥尼尔”,他就像是一座小山般地耸立在您面前,而您所负责的工作是要推动他、让他开步走!这时候,您所需要的是什么?对了,就是扭矩,要让“奥尼尔”开步走,您一来必须克服他那300多磅体重所产生的“最大静摩擦”,才能让他动起来;二来您在推他时,本身也毫无因运动惯性所产生的动能,因此所能仰仗的力量,就等于是引擎从怠速运转、开始加速的“低速扭矩”。 接著,您再继续幻想,如果奥尼尔已经跑动起来,而且是接近禁区、已经到了可以跨步上篮的这个阶段,这时候,如果您跟得上他的脚步,是不是只需要在他背后轻轻一推、奥尼尔就可以用更快的速度飞身上篮了呢?这时候,您施予奥尼尔身上的力道是什么?“高速扭矩”,恭喜您,答对了!而您再想一想,拼尽了吃奶的力道,好不容易才把奥尼尔推动一小步的力道,和轻轻推一把、就可以让300多磅的巨人飞身上篮的力道,难道不是同一个您所发出来的吗? 为何会有如此的差异呢?关键就在“惯性”二个字上,当一样物体要从静止被推动的时候,依据“静者恒静、动者恒动”的牛顿运动定律,绝对要极大的能量,因此,唯有低速扭矩强大的引擎才能产生轻快的起步加速,这,也就是为什么赛车、超级跑车,统统都得采用“轻量化车身搭配大排气量引擎”这种组合的道理。扭矩的功能就是展现在起步加速的时候。 相对的,当车子动起来之后,惯性会让它一直往施力方向持续前进,这时候,如果要让车子的运动速度再加快,所需要的,就是功率。简单一点来说,扭矩是引擎真正可以发出的力道,而功率则是扭矩乘上引擎转速的乘积﹙编按:再乘以一个常数﹚,引擎转速愈高、则功率愈大;因此功率曲线像是一座陡峭的山壁上坡的这一边、数值是一路向上爬的。而扭矩曲线却非如此,除非有涡轮增压器、或是机械增压器的“加持”,否则,任何一具自然进气的扭矩曲线都像是一座小山,爬过了峰顶之后,扭矩就得开始下滑,然而,当扭矩开始下滑时,回转数还继续增加,因此功率曲线并不随著扭矩曲线一同下滑,相反的,因为乘数﹙扭矩﹚虽然开始变小,可是被乘数﹙引擎转速﹚却增长得更快,所以乘积﹙功率﹚还继续上升,一直到乘数实在愈来愈小、小到被乘数的增加也不够将乘积变大的时候,功率曲线才开始下滑,而此时,通常都是在引擎转速接近红线区的附近了。 So,扭矩对于一部车子的意义,在于它的起步加速,扭矩愈大、出现的转速愈低,这部车子的起步加速就会愈快。至于功率呢?它的意义在于创造车子的极速表现,功率愈大、出现的转速愈高,它的尾速就会比较强、就有可能跑出更高的极速。了解功率/扭矩的区别之后,您就会明白为什么美国车极速都不高,因为那是一个高速公路只能开65英里时速﹙大约105km/h﹚、而且一般人都相当守法的国度,因此车子极速能跑多高?对消费者来讲,除了吹牛打屁时的炫耀之外,没什么实际的意义,故而美国车注重起步加速的低速扭矩,加上美国汽油便宜,因此美国车喜欢把引擎排气量做大,以求得货真价实的低速扭矩。与之相对的,是德国车。在欧洲,汽油是相当贵的,因此欧洲车厂擅长以小排气量引擎压榨出大力道,希望在节约燃油之余、也还能获得不错的动力输出,这就是为什么欧洲车比较多见涡轮增压引擎、机械增压引擎的道理;而在德国,因为他们有Autobahn--无限速高速公路,车子有机会飙高速,因此一部车的极速表现如何就相对重要!这也就解释了为什么德国车子多半是高转速功率引擎的道理。