当前位置:首页 » 配件维修 » 光固化成型汽车配件

光固化成型汽车配件

发布时间: 2023-02-09 01:30:05

⑴ 光固化成型技术的材料包括哪些

用特定波长与强度的激光聚焦到光固化材料表面,使之由点到线,由线到面顺序凝固,完成一个层面的绘图作业,然后升降台在垂直方向移动一个层片的高度,再固化另一个层面.这样层层叠加构成一个三维实体.

在当前应用较多的几种快速成型工艺方法中,光固化成型由于具有成型过程自动化程度高、制作原型表面质量好、尺寸精度高以及能够实现比较精细的尺寸成型等特点,使之得到最为广泛的应用。在概念设计的交流、单件小批量精密铸造、产品模型、快速工模具及直接面向产品的模具等诸多方面广泛应用于航空、汽车、电器、消费品以及医疗等行业。

1 SLA 在航空航天领域的应用

在航空航天领域,SLA 模型可直接用于风洞试验,进行可制造性、可装配性检验。航空航天零件往往是在有限空间内运行的复杂系统,在采用光固化成型技术以后,不但可以基于SLA 原型进行装配干涉检查,还可以进行可制造性讨论评估,确定最佳的合理制造工艺。通过快速熔模铸造、快速翻砂铸造等辅助技术进行特殊复杂零件(如涡轮、叶片、叶轮等)的单件、小批量生产,并进行发动机等部件的试制和试验。

航空领域中发动机上许多零件都是经过精密铸造来制造的,对于高精度的母模制作,传统工艺成本极高且制作时间也很长。采用SLA 工艺,可以直接由CAD 数字模型制作熔模铸造的母模,时间和成本可以得到显著的降低。数小时之内,就可以由CAD 数字模型得到成本较低、结构又十分复杂的用于熔模铸造的SLA快速原型母模。

利用光固化成型技术可以制作出多种弹体外壳,装上传感器后便可直接进行风洞试验。通过这样的方法避免了制作复杂曲面模的成本和时间,从而可以更快地从多种设计方案中筛选出最优的整流方案,在整个开发过程中大大缩短了验证周期和开发成本。此外,利用光固化成型技术制作的导弹全尺寸模型,在模型表面表进行相应喷涂后,清晰展示了导弹外观、结构和战斗原理,其展示和讲解效果远远超出了单纯的电脑图纸模拟方式,可在未正式量产之前对其可制造性和可装配性进行检验。

2 SLA 在其他制造领域的应用

光固化快速成型技术除了在航空航天领域有较为重要的应用之外,在其他制造领域的应用也非常重要且广泛,如在汽车领域、模具制造、电器和铸造领域等。下面就光固化快速成型技术在汽车领域和铸造领域的应用作简要的介绍。

现代汽车生产的特点就是产品的多型号、短周期。为了满足不同的生产需求,就需要不断地改型。虽然现代计算机模拟技术不断完善,可以完成各种动力、强度、刚度分析,但研究开发中仍需要做成实物以验证其外观形象、工装可安装性和可拆卸性。对于形状、结构十分复杂的零件,可以用光固化成型技术制作零件原型,以验证设计人员的设计思想,并利用零件原型做功能性和装配性检验。

光固化快速成型技术还可在发动机的试验研究中用于流动分析。流动分析技术是用来在复杂零件内确定液体或气体的流动模式。将透明的模型安装在一简单的试验台上,中间循环某种液体,在液体内加一些细小粒子或细气泡,以显示液体在流道内的流动情况。该技术已成功地用于发动机冷却系统(气缸盖、机体水箱)、进排气管等的研究。问题的关键是透明模型的制造,用传统方法时间长、花费大且不精确,而用SLA技术结合CAD 造型仅仅需要4~5 周的时间,且花费只为之前的1/3,制作出的透明模型能完全符合机体水箱和气缸盖的CAD 数据要求,模型的表面质量也能满足要求。

光固化成型技术在汽车行业除了上述用途外,还可以与逆向工程技术、快速模具制造技术相结合,用于汽车车身设计、前后保险杆总成试制、内饰门板等结构样件/ 功能样件试制、赛车零件制作等。

在铸造生产中,模板、芯盒、压蜡型、压铸模等的制造往往是采用机加工方法,有时还需要钳工进行修整,费时耗资,而且精度不高。特别是对于一些形状复杂的铸件(例如飞机发动机的叶片、船用螺旋桨、汽车、拖拉机的缸体、缸盖等),模具的制造更是一个巨大的难题。虽然一些大型企业的铸造厂也备有一些数控机床、仿型铣等高级设备,但除了设备价格昂贵外,模具加工的周期也很长,而且由于没有很好的软件系统支持,机床的编程也很困难。快速成型技术的出现,为铸造的铸模生产提供了速度更快、精度更高、结构更复杂的保障。

光固化成型技术的研究进展

光固化快速成型制造技术自问世以来在快速制造领域发挥了巨大作用,已成为工程界关注的焦点。光固化原型的制作精度和成型材料的性能成本,一直是该技术领域研究的热点。很多研究者通过对成型参数、成型方式、材料固化等方面分析各种影响成型精度的因素,提出了很多提高光固化原型的制作精度的方法,如扫描线重叠区域固化工艺、改进的二次曝光法、研究开发用CAD 原始数据直接切片法、在制件加工之前对工艺参数进行优化等,这些工艺方法都可以减小零件的变形、降低残余应力,提高原型的制作精度。此外,SLA 所用的材料为液态光敏树脂,其性能的好坏直接影响到成型零件的强度、韧性等重要指标,进而影响到SLA 技术的应用前景。所以近年来在提高成型材料的性能降低成本方面也做了很多的研究,提出了很多有效的工艺方法,如将改性后的纳米SiO2 分散到自由基- 阳离子混杂型的光敏树脂中,可以使光敏树脂的临界曝光量增大而投射深度变小,其成型件的耐热性、硬度和弯曲强度有明显的提高;又如在树脂基中加入SiC晶须,可以提高其韧性和可靠性;开发新型的可见光固化树脂,这种新型树脂使用可见光便可固化且固化速度快,对人体危害小,提高生产效率的同时大幅度地降低了成本。

光固化快速成型技术发展到今天已经比较成熟,各种新的成型工艺不断涌现。下面从微光固化快速成型制造技术和生物医学两方面展望SLA 技术。

1 微光固化快速成型制造技术

传统的SLA 设备成型精度为±0.1mm,能够较好地满足一般的工程需求。但是在微电子和生物工程等领域,一般要求制件具有微米级或亚微米级的细微结构,而传统的SLA 工艺技术已无法满足这一领域的需求。尤其在近年来,MEMS(MicroElectro-Mechanical Systems)和微电子领域的快速发展,使得微机械结构的制造成为具有极大研究价值和经济价值的热点。微光固化快速成型μ-SL(Micro Stereolithography)便是在传统的SLA 技术方法基础上,面向微机械结构制造需求而提出的一种新型的快速成型技术。该技术早在20 世纪80 年代就已经被提出,经过将近20 多年的努力研究,已经得到了一定的应用。提出并实现的μ-SL 技术主要包括基于单光子吸收效应的μ-SL 技术和基于双光子吸收效应的μ-SL 技术,可将传统的SLA 技术成型精度提高到亚微米级,开拓了快速成型技术在微机械制造方面的应用。但是,绝大多数的μ-SL 制造技术成本相当高,因此多数还处于试验室阶段,离实现大规模工业化生产还有一定的距离。因而今后该领域的研究方向为:开发低成本生产技术,降低设备的成本;开发新型的树脂材料;进一步提高光成型技术的精度;建立μ-SL 数学模型和物理模型,为解决工程中的实际问题提供理论依据;实现μ-SL与其他领域的结合,例如生物工程领域[8] 等。

2 生物医学领域

光固化快速成型技术为不能制作或难以用传统方法制作的人体器官模型提供了一种新的方法,基于CT图像的光固化成型技术是应用于假体制作、复杂外科手术的规划、口腔颌面修复的有效方法。在生命科学研究的前沿领域出现的一门新的交叉学科——组织工程是光固化成型技术非常有前景的一个应用领域。基于SLA技术可以制作具有生物活性的人工骨支架,该支架具有很好的机械性能和与细胞的生物相容性,且有利于成骨细胞的黏附和生长。如图5 所示为用SLA 技术制作的组织工程支架,在该支架中植入老鼠的预成骨细胞,细胞的植入和黏附效果都很好[9]。

⑵ 汽车零部件可以用UVLED设备固化吗

UVLED固化技术目前在汽车行业中的应用主要涉及:
汽车头灯透镜,反射镜,安全带,中心控制台,器械面板,车内木质装饰物,仪器面板机测量仪表上的屏幕印花,气缸头部垫圈,方向盘,作隔音垫用的粘合剂,暗箱部件,刹车衬套,离合器衬垫,车轮和车窗等。
以上所提及的并不是UVLED固化技术在汽车行业的全部应用部件,此外还包括某些三维物体以及车外某些部件。汽车头灯透镜清漆UVLED光固化因为聚碳酸酯透镜弹性高,便于外形设计并且重量较轻,很多年以前就取代了传统的玻璃透镜。但是聚碳酸酯耐磨性差,且有黄变现象,因此使用时必须在它的表面施以清漆。
而UVLED固化涂层正好满足了这种需求,如高硬度,耐化学腐蚀,耐光照等。和传统的热固化相比,UVLED固化技术拥有许多优势,比如,大大地减少了加工时间,缩小了设备的占地面积,增加了涂膜和固化期间基材的抗污染能力。汽车头灯透镜涂层固化体系试该技术在车外部件的应用获得了成功的突破。作为一种新紫外线固化产品,其固有的节能、环保、经济的特性,一定将被广泛使用。

⑶ 光固化成型的光固化成型的应用

在当前应用较多的几种快速成型工艺方法中,光固化成型由于具有成型过程自动化程度高、制作原型表面质量好、尺寸精度高以及能够实现比较精细的尺寸成型等特点,使之得到最为广泛的应用。在概念设计的交流、单件小批量精密铸造、产品模型、快速工模具及直接面向产品的模具等诸多方面广泛应用于航空、汽车、电器、消费品以及医疗等行业。
1 SLA 在航空航天领域的应用
在航空航天领域,SLA 模型可直接用于风洞试验,进行可制造性、可装配性检验。航空航天零件往往是在有限空间内运行的复杂系统,在采用光固化成型技术以后,不但可以基于SLA 原型进行装配干涉检查,还可以进行可制造性讨论评估,确定最佳的合理制造工艺。通过快速熔模铸造、快速翻砂铸造等辅助技术进行特殊复杂零件(如涡轮、叶片、叶轮等)的单件、小批量生产,并进行发动机等部件的试制和试验。
航空领域中发动机上许多零件都是经过精密铸造来制造的,对于高精度的木模制作,传统工艺成本极高且制作时间也很长。采用SLA 工艺,可以直接由CAD 数字模型制作熔模铸造的母模,时间和成本可以得到显著的降低。数小时之内,就可以由CAD 数字模型得到成本较低、结构又十分复杂的用于熔模铸造的SLA 快速原型母模。
利用光固化成型技术可以制作出多种弹体外壳,装上传感器后便可直接进行风洞试验。通过这样的方法避免了制作复杂曲面模的成本和时间,从而可以更快地从多种设计方案中筛选出最优的整流方案,在整个开发过程中大大缩短了验证周期和开发成本。此外,利用光固化成型技术制作的导弹全尺寸模型,在模型表面表进行相应喷涂后,清晰展示了导弹外观、结构和战斗原理,其展示和讲解效果远远超出了单纯的电脑图纸模拟方式,可在未正式量产之前对其可制造性和可装配性进行检验。
2 SLA 在其他制造领域的应用
光固化快速成型技术除了在航空航天领域有较为重要的应用之外,在其他制造领域的应用也非常重要且广泛,如在汽车领域、模具制造、电器和铸造领域等。下面就光固化快速成型技术在汽车领域和铸造领域的应用作简要的介绍。
现代汽车生产的特点就是产品的多型号、短周期。为了满足不同的生产需求,就需要不断地改型。虽然现代计算机模拟技术不断完善,可以完成各种动力、强度、刚度分析,但研究开发中仍需要做成实物以验证其外观形象、工装可安装性和可拆卸性。对于形状、结构十分复杂的零件,可以用光固化成型技术制作零件原型,以验证设计人员的设计思想,并利用零件原型做功能性和装配性检验。
光固化快速成型技术还可在发动机的试验研究中用于流动分析。流动分析技术是用来在复杂零件内确定液体或气体的流动模式。将透明的模型安装在一简单的试验台上,中间循环某种液体,在液体内加一些细小粒子或细气泡,以显示液体在流道内的流动情况。该技术已成功地用于发动机冷却系统(气缸盖、机体水箱)、进排气管等的研究。问题的关键是透明模型的制造,用传统方法时间长、花费大且不精确,而用SLA技术结合CAD 造型仅仅需要4~5 周的时间,且花费只为之前的1/3,制作出的透明模型能完全符合机体水箱和气缸盖的CAD 数据要求,模型的表面质量也能满足要求。
光固化成型技术在汽车行业除了上述用途外,还可以与逆向工程技术、快速模具制造技术相结合,用于汽车车身设计、前后保险杆总成试制、内饰门板等结构样件/ 功能样件试制、赛车零件制作等。
在铸造生产中,模板、芯盒、压蜡型、压铸模等的制造往往是采用机加工方法,有时还需要钳工进行修整,费时耗资,而且精度不高。特别是对于一些形状复杂的铸件(例如飞机发动机的叶片、船用螺旋桨、汽车、拖拉机的缸体、缸盖等),模具的制造更是一个巨大的难题。虽然一些大型企业的铸造厂也备有一些数控机床、仿型铣等高级设备,但除了设备价格昂贵外,模具加工的周期也很长,而且由于没有很好的软件系统支持,机床的编程也很困难。快速成型技术的出现,为铸造的铸模生产提供了速度更快、精度更高、结构更复杂的保障。
光固化成型技术的研究进展
光固化快速成型制造技术自问世以来在快速制造领域发挥了巨大作用,已成为工程界关注的焦点。光固化原型的制作精度和成型材料的性能成本,一直是该技术领域研究的热点。目前,很多研究者通过对成型参数、成型方式、材料固化等方面分析各种影响成型精度的因素,提出了很多提高光固化原型的制作精度的方法,如扫描线重叠区域固化工艺、改进的二次曝光法、研究开发用CAD 原始数据直接切片法、在制件加工之前对工艺参数进行优化等,这些工艺方法都可以减小零件的变形、降低残余应力,提高原型的制作精度。此外,SLA 所用的材料为液态光敏树脂,其性能的好坏直接影响到成型零件的强度、韧性等重要指标,进而影响到SLA 技术的应用前景。所以近年来在提高成型材料的性能降低成本方面也做了很多的研究,提出了很多有效的工艺方法,如将改性后的纳米SiO2 分散到自由基- 阳离子混杂型的光敏树脂中,可以使光敏树脂的临界曝光量增大而投射深度变小,其成型件的耐热性、硬度和弯曲强度有明显的提高;又如在树脂基中加入SiC 晶须,可以提高其韧性和可靠性;开发新型的可见光固化树脂,这种新型树脂使用可见光便可固化且固化速度快,对人体危害小,提高生产效率的同时大幅度地降低了成本。
光固化快速成型技术发展到今天已经比较成熟,各种新的成型工艺不断涌现。下面从微光固化快速成型制造技术和生物医学两方面展望SLA 技术。
1 微光固化快速成型制造技术
目前,传统的SLA 设备成型精度为±0.1mm,能够较好地满足一般的工程需求。但是在微电子和生物工程等领域,一般要求制件具有微米级或亚微米级的细微结构,而传统的SLA 工艺技术已无法满足这一领域的需求。尤其在近年来,MEMS(MicroElectro-Mechanical Systems)和微电子领域的快速发展,使得微机械结构的制造成为具有极大研究价值和经济价值的热点。微光固化快速成型μ-SL(Micro Stereolithography)便是在传统的SLA 技术方法基础上,面向微机械结构制造需求而提出的一种新型的快速成型技术。该技术早在20 世纪80 年代就已经被提出,经过将近20 多年的努力研究,已经得到了一定的应用。目前提出并实现的μ-SL 技术主要包括基于单光子吸收效应的μ-SL 技术和基于双光子吸收效应的μ-SL 技术,可将传统的SLA 技术成型精度提高到亚微米级,开拓了快速成型技术在微机械制造方面的应用。但是,绝大多数的μ-SL 制造技术成本相当高,因此多数还处于试验室阶段,离实现大规模工业化生产还有一定的距离。因而今后该领域的研究方向为:开发低成本生产技术,降低设备的成本;开发新型的树脂材料;进一步提高光成型技术的精度;建立μ-SL 数学模型和物理模型,为解决工程中的实际问题提供理论依据;实现μ-SL与其他领域的结合,例如生物工程领域[8] 等。
2 生物医学领域
光固化快速成型技术为不能制作或难以用传统方法制作的人体器官模型提供了一种新的方法,基于CT图像的光固化成型技术是应用于假体制作、复杂外科手术的规划、口腔颌面修复的有效方法。目前在生命科学研究的前沿领域出现的一门新的交叉学科——组织工程是光固化成型技术非常有前景的一个应用领域。基于SLA技术可以制作具有生物活性的人工骨支架,该支架具有很好的机械性能和与细胞的生物相容性,且有利于成骨细胞的黏附和生长。如图5 所示为用SLA 技术制作的组织工程支架,在该支架中植入老鼠的预成骨细胞,细胞的植入和黏附效果都很好[9]。

⑷ 3D打印技术是什么 据说能打印汽车和食品和器官

3D打印——改变世界格局源动力

随着人类社会的发展以及文化、艺术、生产工具和技术的进步,经济不断向前发展。在几千年的历史长河中,中国以其卓越的文明遥遥领先于世界各国,特别是经济实力尤为突出。从英国人安格斯·麦迪森所著《世纪经济千年史》我们可以看出,中国经济总量占世界经济的比重,公元1000年为22.7%,公元1500年为25%,公元1600年为29.2%,东方文明领先于西方世界。
然而这一格局在17世纪以后发生了根本的变化。随着资本主义制度在英国的确立,蒸汽机开始应用于生产领域,机器生产代替手工生产,整个世界从“手工业时代”跨入“蒸汽时代”,第一次工业革命拉开大幕,极大地推动了欧洲各国的经济发展。由于生产方式的改变,生产能力得到大幅提高,国内市场无法及时消化日益增长的商品生产,于是英、法、德、意、荷等资本主义国家纷纷向亚、非等其他各洲拓展殖民地,寻找新的市场与原料供应地。显然以英、法、德、意、荷为代表的欧洲文明已经赶上并超过亚洲,从而形成东方从属于西方的局面,可谓制造改变世界格局。最具实质性的变化是在第二次工业革命到20世纪中叶。1870年以后,由于电力的广泛应用,世界由“蒸汽时代”迈向“电气时代”,科学技术的发展突飞猛进,各种新技术、新发明层出不穷,并被迅速应用于工业生产,大大促进了世界经济的发展。特别是美国的崛起,足以说明制造业对一个国家有着重要的作用。18世纪末,美国独立以后仿效英国走工业化现代化的道路。由于英国自伊丽莎白时代开始, 制造业得到国家的鼓励, 商业势力开始向全球扩展。法国在路易十四统治时期, 工商业取得了长足的进步, 西班牙、葡萄牙在世界各地抢占大量商业据点, 连俄国与土耳其等国家也在发展商业与制造业。这是一个时代的潮流。因此, 美国意识到只有致力于工商业发展, 特别是制造业的发展与使用机器,美国才能跻身于世界大国的行列。基于这种理念,美国大力发展制造业。19世纪上半叶, 美国最主要的发展是创立新的工厂体制。它把原来的一些分散的制作过程加以合并,实行新的分工, 而后将制造某种商品的所有工序集中在一个工厂, 置于统一的管理之下。经过一百余年的发展,到十九世纪末,世界金融中心由伦敦转移至纽约,美国成为世界上最发达的国家,世界第一经济大国。可以说制造业不仅改变着世界格局,而且其发展水平决定着一个国家的发达程度。如美国68%的财富来自于制造业,国民总产值的49%是由制造业提供的。我国自改革开放以后制造业得到迅猛发展,2011年,我国高技术制造业年总产值达9.2万亿元,约占我国GDP比重19.51%,加工贸易出口总产值达8354亿美元,约占我国GDP比重为11.2%。制造业的发展不仅为老百姓的日常生活提供了保障,也为提升我国的综合国力奠定了基础。
自2008年美国金融导致的全球经济危机爆发以来,世界经济似乎始终都未走出低谷,尽管期间也曾多次试图反弹,但最终仍因后劲不足而增长乏力。历史经验反复证明,在全球经济陷入衰退之时,正是新经济萌芽和新技术诞生之时。全球经济之萎靡不振,表明传统的生产关系已经严重阻碍了生产力的发展,变革将成为生产关系新的动力。
今年以来,对第三次工业革命的探讨达到高潮。美国学者杰里米·里夫金称,互联网与新能源的结合,将会产生新一轮工业革命——这将是人类继19世纪的蒸汽机和20世纪的电气化之后的第三次“革命”。而英国《经济学人》杂志也指出,3D打印技术市场潜力巨大,势必成为引领未来制造业趋势的众多突破之一。这些突破将使工厂彻底告别车床、钻头、冲压机、制模机等传统工具,改由更加灵巧的电脑软件主宰,这便是第三次工业革命到来的标志。
3D打印技术属于一种非传统加工工艺,也称为增材制造、快速成型等,是近30年来全球先进制造领域兴趣的一项集光/机/电、计算机、数控及新材料于一体的先进制造技术。与切削等材料“去除法”不同,该技术通过将粉末、液体片状等离散材料逐层堆积,“自然生长”成三维实体,该技术将三维实体变为若干二维平面,大大降低了制造复杂程度。理论上,只要在计算机上设计出结构模型,就可以应用该技术在无需刀具、模具及复杂工艺条件下快速地将设计变为实物。该技术特别适合于航空航天、武器装备、生物医学、模具等领域中批量小、结构非对称、曲面多及内容结构零部件(如航空发动机空心叶片、人体骨骼修复体、随形冷却水道)的快速制造,符合现代和未来的发展趋势。
3D打印技术的起源与发展
3D打印技术的核心制造思想最早起源于美国。早在1892年,J.E.Blanther在其专利中曾建议用分层制造法构成地形图。1902年,Carlo Baese的专利提出了用光敏聚合物制造塑料件的原理。1904年,Perera提出了在硬纸板上切割轮廓线,然后将这些纸板纸板粘结成三维地形图的方法。20世纪50年代之后,出现了几百个有关3D打印的专利。80年代后期,3D制造技术有了根本性的发展,出现的专利更多,仅在1986-1998年间注册的美国专利就有24个。1986年Hull先生发明了光固化成型(SLA,Stereo lithography Appearance ),1988年Feygin发明了分层实体制造,1989年Deckard发胆了粉末激光烧结技术( SLS,Selective Laser Sintering),1992年Crump发明了熔融沉积制造技术(FDM,Fused Deposition Modeling ),1993年Sachs先生在麻省理工大学发明了3D打印技术。
随着3D打印专利技术的不断发明,相应地用于生产的设备也被研发出来。1988年美国的3D Systems公司根据Hull的专利,生产出了第一台现代3D打印设备——SLA-250(光固化成形机),开创了3D打印技术发展的新纪元。在此后的10年中,3D打印技术蓬勃发展,涌现出了十余种新工艺和相应的3D打印设备。1991年Stratasys的FDM设备、Cubital的实体平面固化(SGC,Solid Ground Curing)设备和Helisys的LOM设备都实现了商业化。1992年DTM(现在属于3D Systems公司)SLS技术研发成功。1994年德国公司EOS推出了EOSINT选择性激光烧结设备。1996年3D Systems公司使用喷墨打印技术制造出其第一台3D打印机——Actua 2100。同年Z Corp也发布了Z402 3D打印机。总体而言,美国在设备研制、生产销售方面占全球主导地位,其发展水平及趋势基本代表了世界的发展水平及趋势。欧洲和日本也不甘落后,纷纷进行相关技术研究和设备研发。当时虽然台湾大学拥有LOM设备,但台湾各单位及军方的引进安装4SL系列设备,香港生产力促进局和香港科技大学、香港理工大学、香港城市大学等都拥有RP设备,其重点是有关技术的应用与推广。
邓小平同志说,科学技术是第一生产力。3D打印技术作为目前最为先进的一种制造方式,也代表了目前全球最前沿的科学技术。党和国家历来重视科技产业的发展。在上世纪80年代中期,党中央、国务院就提出了实施了高技术研究发展计划,对中国未来经济和社会发展有重大影响的生物技术、信息技术、自动化技术、新材料技术、激光技术等众多领域,确立了15个主题项目作为突破重点,以追踪世界先进水平。在这种形势下,1994年作为国内第一家从事3D打印的北京隆源自动成型有限公司成立,公司注册资金200万美元,专门进行快速成型设备的研发和销售,并于当年成功制造了中国第一台SLS快速成型设备——AFS-360。这种设备以聚丙烯(PP)、塑料粉末(PS)等为原材料,用于生产假牙、高尔夫球杆球头、头骨等。
3D打印技术与装备水平
在装备的研发方面,德国、美国和日本在该领域处于世界领先水平,并已形成了多家专业化和规模化研制和生产3D打印设备的知名企业,如德国EOS、美国3D Systems以及日本CMET公司。3D Systems公司生产的SLA装备在国际市场上占最大比例。该企业自1988年以来相继推出了SLA-250、250HR、3500、5000、7000以及Viper Pro System等SLA装备(最大形成空间达到1500×750×550mm)其主要技术优势为装备使用寿命长(5000小时以上),成形精度高(层厚可达0.025mm),成形效率高。日本的Denken工程公司和Autostrade公司打破SLA装备使用紫外线光源的常规,率先使用680nm左右波长的半导体激光器作为光源,大大降低了SLA装备的成本。在SLS装备方面,德国EOS公司和美国3D Systems公司是世界上该技术的主要提供商。成形材料由早期的高分子材料拓展至金属、陶瓷等功能材料,成形精度约为0.1-0.2mm,成形空间逐渐增大,最大台面超过500mm。在金属直接3D打印方面,世界范围内已经有多家成熟的装备制造商,包括德国EOS公司(EOSING M270)、美国MCP公司(Realizer系列)、德国Concept laser公司(M Cusing系列)。瑞典Acram公司的EBM装备也占有重要地位。
北京隆源公司自1994年研制成功第一台激光快速成型机开始,便倾力开发选区激光粉末烧结(SLS)快速成型机,同时致力于快速原型的应用加工服务。先后推出了AFS-360、500、laserCore5100、5300、7000等型号的SLS装备(最大成形空间为1400×700×400mm),目前拥有110多家设备用户及100多家加工服务用户,市场主要集中在航空航天、汽车制造、军工和铸造行业等。作为公司总经理的冯涛,毕业于清华大学,曾任职于清华大学高分子材料研究所,具有较好的高分子材料和激光光学理论知识和实践经验,是我国最早从事激光快速自动成型技术研究的专家之一。他对于3D打印技术的应用与材料有着很深的造诣。早在1995年他就提出将SLS应用于快速精密制造。与其他3D打印机技术相比,SLS最突出的优点在于它所使用的成型材料十分广泛。从理论上说,任何加热后能够形成原子间粘结的粉末材料都可以作为SLS的成型材料。目前可成功进行SLS成型加工的材料有石蜡、高分子、金属、陶瓷粉末和它们的复合粉末材料。由于SLS成型材料品种多、用料节省、成型件性能分布广泛,适合多种用途以及SLS无需设计和制造复杂的支撑系统,所以SLS的应用越来越广泛。在他的带领下,隆源公司成功研制出铸造熔模、蜡模压型及铸造型壳等复杂工艺制作方法,后来又研制出聚苯乙烯粉末、资材料在3D打印中的应用方法,如今冯涛又着手研究金属粉末在SLS技术中的应用,并取得了一定的成效。在他看来,实现使用高熔点金属直接烧结成型零件,对用传统切削加工方法难以制造出高强度零件对3D打印技术更广泛的应用具有特别重要的意义。SLS成形技术在金属材料领域中研究方向应该是单元体系金属零件烧结成型,多元合金材料零件的烧结成型,先进金属材料如金属纳米材料,非晶态金属合金等的激光烧结成型等,尤其适合于硬质合金材料微型元件的成型。此外根据零件的具体功能及经济要求来烧结形成具有功能梯度和结构梯度的零件。随着对激光烧结金属粉末成型机理的掌握对各种金属材料最佳烧结参数的获得,以及专用的快速成型材料的出现,SLS技术的研究和引用必将进入一个新的境界。
广泛的应用领域
作为一项集光/机/电、计算机、数控及新材料于一体的先进制造技术,3D打印技术已广泛应用于航空航天、军工与武器、汽车与赛车、电子、生物医学、牙科、首饰、游戏、消费品和日用品、食品、建筑、教育等众多领域。可以预见的是,3D打印技术将更趋向于日常消费品制造、功能零件制造及组织与结构一体化制造的方向。
航空航天:航空航天产品具有形状复杂、批量小、零件规格差异大、可靠性要求高等特点,产品的定型是一个复杂而精密的过程,往往需要多次的设计、测试和改进,耗资大、耗时长,传统方法难以制造,3D打印技术以其灵活多样的工艺方法和技术优势而在现代航空航天产品的研制与开发中具有独特的应用前景。在国外3D打印技术很早就应用于航空航天领域。美国波音公司应用3D打印技术与传统铸造技术相结合,制造出铝合金、钛合金、不锈钢等不同材料的货舱门托架等制件;通用公司应用3D打印技术制造航空航天与船舶叶轮等关键制件;比利时Materialise公司的Mammoth激光快速成型系统,其一次性最大加工尺寸可达2200mm;在国内,北京隆源凭着自身的技术优势,我国航天部等部门及飞机制造公司提供直升机发动机、直升机机匣、蜗轮泵、钛机架、排气道(最大高度达到2800mm)、飞机悬挂件、飞轮壳等飞机零部件的生产服务。
军事工业:3D打印技术和传统制造技术相比,具有简单化,易操作性等特点,特别是对于一些新材料的加工,成效尤为显著。比如铝合金一直是军事工业中应用最广泛的金属结构材料。铝合金具有密度低、强度高、抗腐性好,耐高温等特点,作为结构材料,因其加工性能优良,可制成各种截面的型材、管材、高筋板材等,以充分发挥材料的潜力,提高构件刚、强度。所以,铝合金是武器轻量化首选的轻质结构材料。美国军方应用3D打印技术辅助制造导弹用弹出式点火器模型,取得了良好的效果。在我国钛合金已经广泛应用于自行火炮炮塔、构件、装甲车、坦克、军用直升机等的制造。1999年,北京隆源自动成型有限公司利用3D打印技术,参与完成了若干项国家重点项目的开发研制任务,如:用于大推力火箭的液氧-煤油和液氧-液氢发动机;JS-Ⅱ型新式坦克的涡轮增压器,卫星陀螺仪框体;红外制导仪观测镜壳体等,进一步推动了我国军事工业的发展。
汽车制造:目前德国奥迪汽车公司(Audi)使用3D打印技术成功的KUKA机器人来制造的Audi RSQ汽车。随着我国汽车工业的发展,汽车产量的迅猛增长,但其中一些关键性零部件日趋复杂化、大型化和轻量化,要求零部件的整体化、集成化制造,采用模具进行翻砂制模的传统工艺,模具越来越复杂,活块数量也急剧增加,这些因素都制约了我国汽车工业的发展。为此,北京隆源公司总经理冯涛展开3D打印技术生产汽车发动机的研究。SLS是利用红外激光光束所提供的热量熔化热塑性材料以形成三维零件。加工开始时先将一层很薄(100μm~250μm)的热塑性粉末均匀地铺在工作平台上,辅助加热装置将其加热到熔点以下的温度,在均匀的粉末表面,计算机控制激光按照零件当前层的信息扫描,激光扫描到的地方粉末烧结形成固体,激光未扫描到的地方仍是粉末,可以作为下一层的支撑并能在成型完成后去除。上一层制作完毕后成型活塞下降一层,供粉活塞上升,用铺粉滚筒将粉体从供粉活塞移到成型活塞,将粉体铺平后即可扫描下一层。不断重复这个辅粉和选区烧结过程直到最后一层,这样一个三维实体就制作出来了。SLS最大特点一个是成型过程与复杂程度无关,因此特别适合于内部结构极其复杂的发动机缸体、缸盖、进排气管等部件;另一个重要的特点是成型材料广泛,特别是可以用铸造的树脂砂和可消失熔模材料成型,因此,可以通过与铸造技术结合,快速铸造出发动机的部件。SLS技术将快速成型与传统铸造技术有效结合快速制造复杂金属零件的技术。发动机的缸体、缸头一般都是铸造产品,利用快速铸造技术可以在很短时间内得到与最终产品材料一致、性能接近的发动机产品供测试与检验。冯涛认为,SLS技术与铸造技术结合,衍生出快速铸造技术,其工艺特征是简捷、准确、可靠和具有延展性,可有效地应用于发动机设计开发阶段中样机的快速制造。其适合单件和小批量试制和生产的特点,可迅速响应市场和提供小批量产品进行检测和试验,有助于保证产品开发速度。其成型工艺过程的可控性,可在设计开发阶段低成本地即时修改,以便检验设计或提供装配模型。有助于提高产品的开发质量,其快速成型原材料地多元性,为产品开发阶段提供了不同地工艺组合,由于SLS原材料的国产化和成型工艺可与传统工艺有机结合,有助于降低开发成本,其组合工艺的快捷性,支持产品更新换代频次的提高,有助于推动产品早日进入市场。利用3D打印技术,为汽车制造商生产发动机缸体、缸盖、变速箱壳等,不仅制造速度快而且精度高,从而使得汽车复杂零部件制造变得数字化、精密化、柔性化、绿色化。如今,国内众多的高铁、动车、地铁的发动机都有隆源的产品。
生物医药:目前3D打印技术也被应用到生物医药方面,包括骨骼、牙齿、人造肝脏、人造血管、药品制造等。在生物制造方面,欧美等发达国家研究较多、范围较广且已经取得临床应用:在美国利用SLA制造技术,使用生物相容树脂可以制作医用助听器、眼睛水晶体模型、人工牙齿等;在意大利利用SLA制造技术制造了人体骨骼修复体。1998年,北京隆源公司与北京大学口腔医院合作,由口腔医院将患者的CT扫描数据从CT工作站经Magics软件处理后传输至PC机上 ,以标准格式(Dicom 格式)刻录存储 ,提供给北京隆源公司,北京隆源公司利用开发研制AFS-320型快速成型机, 采用选区激光粉末烧结法 ,原料为聚苯乙烯粉末 ,制作成实体模型,医治颧上颌骨骨纤维异常增生症,取得了很好的疗效,同时在陈旧性颧骨颧弓粉碎性骨折的治疗,临床应用结果表明治疗效果良好。
重要的战略意义
3D打印技术有着广

⑸ 光固化3D打印机高精度DLP可以打印哪类模型呢

DLP光固化3D打印机的打印时间通常比SLA要短,因为它们是单层打印。然而,就相对可打印区域而言,DLP处于投影模式,所以相对可打印区域相对较薄。



最近,光固化3D打印机的发展非常好,因为打印精度高,可以达到微米级,所以主流3D打印机厂商纷纷推出相关机型。汽车模型和机器人模型需要DLP光固化3D打印机进行打印。另一方面,打印出来的3D模型人物也是可以复制使用的,这样可以生产出大量一模一样的3D模型人物。一般的步骤是,打印好3D模型后,将其放在一个盒子里,然后倒上硅胶,硅胶硬化成型后就可以拆了,也就是把3D打印好的模型娃娃拿出来,最后再倒出来,把3D模型娃娃复制出来。

小编针对问题做得详细解小编针对问题做得详细解读,希望对大家有所帮助,如果还有什么问题可以在评论区给我留言,大家可以多多和我评论,如果哪里有不对的地方,大家也可以多多和我互动交流,如果大家喜欢作者,大家也可以关注我哦,的点赞是对我最大的帮助,谢谢大家了。




⑹ 汽车大灯表面UV固化涂料的类型是什么

光固化修补底漆
汽车的金属部件特别是车身的金属底材一般采用阴极电泳漆或其他防锈漆,含有大量颜料和填加剂,光固化涂料难以代替,但是当车身损坏,需予修补时,其底漆不可能使用电泳漆也难予使用热固型涂料,室温固化涂料则需耗费太多时间。现在ICI发明了一种光固化底漆UVSpeedPrime,它采用常用于电子器件的树脂组分,用于低能UV光的引发剂及特殊颜料组成,填加的颜料可满足抗腐蚀、硬度、消光及填孔等要求,但不影响光固化速度。和一般不透明的底漆不同,该产品是透明的。该涂料易于涂布、容易打磨并且使用安全,采用低能手持紫外光灯可在2分钟内固化,经处理和打磨后即可涂布面漆,整个修补过程快捷易行。

汽车面漆
汽车面漆最重要的作用是装饰,除了要求有美丽的外观外,还同时要求抗光氧化、抗水解、抗划伤、抗酸雨和汽油、抗撞击、抗雷雨及曝晒等性能。现在面漆一般由两层涂料组成,下层(第一道)涂料加有各种颜料如彩色颜料闪光颜料等(二道浆),上层涂料为清漆,它能赋予涂层高的光泽并满足面漆的各种要求,因此是至关重要的。光固化涂料难以用在面漆的第一道漆但可用于透明清漆。光固化透明清漆具有无溶剂、快速固化、耐刻划、耐擦伤、高光泽、高硬度等固有的优点,但它的耐候性不是很好,这是它较长时间难于被接受的原因。光固化清漆不仅机械性能应达到或超过二罐装聚氨酯清漆,而且耐候性也要达到一定的要求。尽管可以通过添加光稳定剂等抗老化剂改善涂膜的耐候性能,但是光稳定剂的加入会影响光固化速度,这是一个难以解决的问题,是阻碍光固化清漆在汽车上使用的关键问题之一。近年来通过选用合适的引发剂及紫外光吸收剂等防老化剂打开了用于汽车面漆的道路。汽车透明清漆一般采用丙烯酸化聚氨酯光固化树脂,选用的光引发剂一般为BAPO(bisacylphosphinoxide)或Ergacure118(a-hydroxylketone),同时在配方中加入紫外光吸收剂如HPT(hydroxyphenyl-s-tri-azine)及采用受阻胺HALS为自由基除去剂。实验证明通过合适的组分调节,可以达到满意的固化速度及优良的耐候性。

塑料部件涂料
汽车的部件很多已采用工程塑料或者聚合物基复合材料,他们不仅需要涂料来改善其表观而且需要涂料改善其表面性质,光固化涂料在这方面具有十分突出的优势。光固化在这一方面的应用已有十余年的历史。
1.车灯灯罩:聚碳酸酯灯罩早已代替了玻璃灯罩,聚碳酸酯具有易加工成型、重量轻和柔性强不易破碎等优点,但它的表面强度不够,不耐刻划和刮擦而且耐候性差,易变黄,采用光固化涂料可以改善表面性质,因而得到了应用,不仅大大节约了涂装时间而且涂层有很好的光学和耐擦性能,并可满足长期耐候性要求。
2.反光镜:汽车反光镜也是用塑料制备的,但它的表面必须有很高的反光性能。为了达到这一目的,塑料表面须经三次紫外照射处理。首先塑料要经紫外照射使表面产生光化学反应增加表面张力,以利于光固化涂料的流平与附着,经过涂布光固化清漆固化后,塑料表面变得平坦而易于金属化,然后在真空沉积箱中完成金属沉积。在塑料表面金属化后还需要再涂布一层光固化涂料,它的作用是保护金属反光层。
3.玻璃纤维增强复合材料部件:复合材料已大量应用于汽车的各种部件,为了保护表面及美观,要求使用涂料进行涂装。例如前述的示范赛车车身部分采用了电子束固化的复合材料,同时采用了光固化涂料予以修饰。在体积很大的部件上使用光固化涂料的一个关键问题是设计便于车身整体涂装的涂装固化室。

⑺ 汽车大灯的反光碗是怎么做光固化处理的,用的是什么材料,怎么做

反光碗本身是玻璃材质,里面那层反光的材料是铝! 把铝丝放着一个真空的机器内,通电加热是铝丝雾化,就能镀到玻璃上面

⑻ 3d打印没有固化机

打印越来越火热,提到光固化3D打印可能大部分只知道sla的成型方式,也会觉得这种打印机应该是上万元的,光固化一听名字固然就会想到是光照射后固化成型的意思。光固化大部分使用的耗材都是光敏树脂,光敏树脂是由光引发剂,单体聚合物与预聚体组成的混合物,这种材料可在特定波长紫外光聚焦下完成固化。



现在光敏树脂材料一般用于SLA、DLP、LCD机型之中。使用光敏树脂材料打印出来的模型,表面较为光滑、打印精度和成型质量高。

接下来详细说下光固化SLA、DLP、LCD这三种机器之间的不同。

每一个光固化技术的核心都是围绕光源问题的解决方案,从激光扫描的SLA,到数字投影的DLP,再到最新的LCD打印技术。我们可以了解光固化技术的特点。光固化技术,除了SLA激光扫描和DLP数字投影,目前形成了一种新的技术,就是利用LCD作为光源的技术。LCD打印技术,最简单的理解,就是DLP技术的光源用LCD来代替。

在30年前的时候,3D打印面世的那天起,就是从光固化技术SLA(激光扫描)立体光刻技术开始的。所以光固化才是3D打印技术的老大。LCD掩膜技术从2013年就有人开始研制。有兴趣可以搜到最早的创客用普通电脑LCD显示器去掉背光板,加上405的LED灯珠做背光,试着打印uv树脂。

接下来给大家仔细介绍一下三种机器的成型原理

什么是LCD?



LCD是Liquid Crystal Display的缩写,顾名思义是液晶投影仪,是将红、绿、蓝三色液晶板上,通过透镜放大和反光镜透射出。液晶投影仪中的光源是金属卤素灯或UHP(冷光源)。

什么是DLP?



DLP是“Digital Light Processing”的缩写,即为数字光处理,也就是要先把影像信号经过数字处理,然后再把光投影出来。其原理是将通过UHP灯泡发射出的冷光源通过冷凝透镜,通过Rod(光棒)将光均匀化,经过处理后的光通过一个色轮(Color Wheel),将光分成RGB三色(或者RGBW等更多色),再将色彩由透镜投射在DMD芯片上,最后反射经过投影镜头在投影屏幕上成像。

什么是SLA?



SLA是"Stereo Lithography Apparatus"的缩写,激光束在液态光敏树脂表面勾画出物体的第一层形状,然后制作平台下降一定的距离,再让固化层浸入液态树脂中,如此反复直到打印成型。最后,将原型从树脂中取出后,进行最终固化,再经打光、电镀、喷漆或着色处理即得到要求的产品。

光固化技术,核心问题光源之外,还有软件,自动化,应用和工业很多配套问题。另一个核心问题,光固化树脂,也是一个核心技术。

从光固化快速成型的原理和它所使用的材料来看,光固化快速成型主要有如下一些特点:

LCD优点:

1.精度高:很容易达到平面精度100微米,优于第一代SLA技术,和目前桌面级DLP技术有可比性

2.价格便宜:主要对比前代技术的SLA和DLP,这个性价比极其突出。

结构简单:因为没有激光振镜或者投影模块,结构很简单,容易组装和维修

3.树脂通用:由于采用405nm背光,所有DLP类的树脂或者大部分光固化树脂理论上都可以兼容。唯独小心某些SLA专用树脂,不一定兼容性很好,主要怕曝光不足。

4.打印速度快:同时打印多个零件不牺牲速度,因为这个和DLP技术一样,是面成型光源。

体积小,重量轻,携带起来也非常方便,是投影仪市场上的主流产品,因此也正在以较低价格逐渐普及到家庭娱乐和小型商城中。

DLP投影机的优点:

1、从技术角度来看,DLP投影机主要具有原生对比度高、机器小型化、光路采用封闭式三大特点;

2、DMD芯片采用的是机械式工作方式,镜片的移动可控性更高,原生对比度较高就在意料之中了;

3、DLP投影机采用的是反射式原理,对于眼睛保护更加周到;

4、DMD芯片采用的是半导体结构,在高温下运作镜片也不易发生太大的变化,所以DLP投影机采用封闭式光路,降低了灰尘进入了概率;

SLA加工的优点:

1、加工精度高,可以达到0.1mm;

2、能制造形状复杂(如空心零件),特别精细(如首饰、工艺品等)的零件,适合做手机、收音机、对讲机、鼠标等精细的零件和玩具以及高科技电子工业机壳、家电外壳或模型、摩托车、汽车配件或模型、医疗器材等;

3、制造零件速度快,可进行0.1-0.15mm分层扫描;

4、表面质量好,能制作非常精细的细节薄璧结构,后处理轻易;

5、加工到位,很多CNC手办加工不到的细节部分都能加工出来,从而减轻了后处理的工作量;

喜欢(0)

⑼ 解答汽车材料通常分为哪两类材料 2.简述汽车零部件材料的应用和发展情况。

一、汽车材料通常分为以下两大类:

1、金属材料:钢板、铸铁等重金属材料;铝、镁、钛等轻金属及其合金材料、泡沫金属等材料。

2、非金属材料:工程塑料、纤维、树脂、玻璃、橡胶、非金属泡沫材料、非金属复合材料等。

二、目前我国汽车工业正处于快速发展的关键时期,汽车业新一轮购车热潮掀起,一批整车厂汽车公司销量连续高速增长,在汽车市场火爆的带动下,以离合器、汽车底盘、汽车前后桥以及汽车零部件制造加工、汽车改装、汽车修理等相关行业的汽配市场呈现出快速发展之势。

汽车工业的发展为汽车配件工业的发展带来了极大的机会。中国汽车工业产业目前每年对零配件的需求量达到八百亿元人民币左右,而每年从一级市场到区域经营再到零售商的汽车零配件三级流通至少要完成二千四百亿元人民币的交易额。1999年全国零配件的总供求量为700亿人民币,进口汽车配件的总需求量近7亿美元,而且将以每年11%~20%的速度增长。从总量和趋势来看,中国汽配市场都呈现出巨大的发展空间。

(9)光固化成型汽车配件扩展阅读:

在汽车产业高速发展的带动下,近年来汽车零部件出现了迅猛发展之势,但也应该看到,中国汽车零部件在全球供应链中的地位还很脆弱,在众多发展机遇的同时,零部件发展的滞后问题日益凸显。

缺乏名牌产品中国虽已基本形成了为国内汽车配套的完整体系,但汽车零部件企业产品趋同、规模小,抗风险能力低;产品技术含量较低,缺乏可持续发展能力,尤其缺乏轿车主要总成和关键部件的核心技术。企业普遍缺乏自主开发能力,绝大多数企业研发投入目前只占销售收入的1.4%左右,远远低于跨国公司平均5%的水平。

热点内容
10款逍客内饰图片 发布:2025-07-17 20:48:53 浏览:726
手六切诺基和三菱越野 发布:2025-07-17 20:48:49 浏览:971
兴义跑贵阳商务车 发布:2025-07-17 20:41:57 浏览:709
中天单拓展房车 发布:2025-07-17 20:34:18 浏览:334
超级越野赛是什么 发布:2025-07-17 20:21:27 浏览:168
商务车7座怎么去找客户 发布:2025-07-17 20:01:34 浏览:214
三桥二手车价怎么样 发布:2025-07-17 20:01:25 浏览:376
上海最新三轮车价格 发布:2025-07-17 19:53:00 浏览:159
铃木ax100原装越野 发布:2025-07-17 19:48:52 浏览:128
广东到江西自驾游路线 发布:2025-07-17 19:34:54 浏览:232