越野车扭力杆原理
⑴ 请问扭力杆在坦克上面是干什么的 如果是悬挂的话,原理是
坦克可以想象成横放的汽车扭杆弹簧,汽车是纵向的。
扭杆弹簧, 外形像 F(右轮)。
F 字母左边的两横就是右轮摆臂,一束就是扭杆,F低端那头的扭杆是固定死的。
一端固定,一端连接可以上下自由活动的摆臂,摆臂连接避震器,固定。
压缩、拉伸的时候,扭杆可以有一些扭曲变形,来达到压缩拉伸的效果。
很多皮卡就是扭杆弹簧,双叉臂的。
⑵ 猎豹扭力杆正确调法
前扭力杆是现在大部分越野车前悬重要的组成部分,是一个弹性元件,因结构简单,所以现在新出的suv基本也用它,因其是弹性元件,所以一段时间之后,它将疲劳,弹性降低。但有很多族友为使其车头升高,简单办法就是将扭力杆调至最高,但是这实际是不可取的,除了舒适性差了外,同时也降低整个车身的寿命。车出厂标准高度,实际也说明扭力杆也是调到了标准值。但车在使用一段时间后,会出现车头下塌,这时就要调节扭力杆了。调节步骤如下:
1.将车放在水平地面,左右前后轮成一线.
2.用卷尺量前轮毂到轮眉的距离,做好记录
3.将车头顶起,前两轮悬空
4.趴到车底,注意将后轮塞住,防车前移,将看到大梁中间有一横梁,左右各一根,用螺丝与梁连接,另一端与前悬连接
5.在车底先将顶部两个螺丝松开,然后顺时钟扭动螺母(17大),一般螺母上调0.5厘米,前部能升高约2厘米
6.放下车头,重新量轮毂与轮眉距离
7.到马路试车几百米
8.再重复上述步骤,一般要调3次,直至左右一直,前悬有弹性,直至行驶最舒服,但是绝不能调至最高,否则扭力杆没弹性,前悬很硬,扭力杆甚至断裂
如果调到最高,前悬还是调不上,塌塌的,那说明扭力杆失效,需要更换。
⑶ 防倾杆的作用及工作原理是什么
作用就是防止汽车车身在转弯时发生过大的侧倾,意思就是:防倾杆是用弹簧钢制成的U型扭杆弹簧,横置在汽车的前桥或后桥,两端通过连杆连接在悬架上,杆的中部通过衬套连接在副车架上。
它的结构很简单,是一条U型金属连杆,负责把两侧悬挂连接起来。作用是当车辆转弯时,弯道内侧悬挂被拉伸,内侧被压缩,防倾杆此时起到一个抗扭作用以减少拉伸与压缩幅度,从而控制车辆的侧倾幅度。
过弯时,弯内轮的悬挂伸长,弯外轮的悬挂被压缩,这时防倾杆就会产生扭转抑制这种情况。太软的防倾杆在独立悬挂的车会造成过弯时过多的外倾角,减少轮胎的接地面积,影响操控性。
调配好的平衡杆的最理想状态是把防倾杆所提供的防倾阻力控制在占总防倾阻力的20%~50%之间。
(3)越野车扭力杆原理扩展阅读
1、当平路行驶时时,左右轮受到的力是一样的,连杆同时作用于防倾杆上,防倾杆以衬套为支点上下运动,防倾杆不起作用。
2、当左急转弯时,因为惯性,车身倾斜,弯心侧悬挂拉长,向下运动,带动内侧防倾杆向下运动,此时外侧防倾杆也向下运动,防倾杆将向下的力作用于外侧悬挂,此时外侧悬挂是被压缩的,所以向下的力就使得外侧悬挂压缩量变小。
同时内侧悬挂也受外侧悬挂的影响,拉伸量变小。以达到缓解车身侧倾的作用。
通俗地说,防倾杆的作用是在车子转弯时,使悬挂变硬,让左右两轮相对于车身不要有太大的拉伸。
所以防倾杆不是随便选的,防倾杆的硬度是跟材质、粗细、安装角度等等相关的,太软没效果,太硬会造成轮胎离地,影响操控安全。越野车是另一种存在,越野车在极端情况下为了保证足够长的悬挂行程,比如牧马人可以切断的防倾杆。
⑷ 汽车的螺旋弹簧作用很大,你知道它的工作原理吗
螺旋弹簧由弹簧钢制成,可制成等距等刚度或变刚度变节距。大多数汽车都有钢弹簧。最古老的是板簧。最上面和最长的条纹,主叶,在每一端卷成一个眼睛,并通过它连接到框架上。下面的叶子越来越短,曲率越来越小。螺旋弹簧是一种缓冲元素,以其类似于螺旋的形状命名。具有无润滑、无污垢、重量轻、占地面积小等优点。螺旋弹簧只是一个弹性钢棒线圈。它被车轮的垂直运动拉伸或压缩。扭力杆是一段带有花键或方端的弹簧钢。花键端固定在构成悬架一部分的杆臂上。当杠杆臂上下移动时,杠杆旋转。
此外,螺旋弹簧只能承受垂直载荷,因此必须配备导向机构,以传递垂直力以外的各种力和力矩。螺旋弹簧主要用于配备独立悬架装置的车辆。
⑸ 悬架主要几部分组成
底盘:底盘作用是支承、安装汽车发动机及其各部件、总成,形成汽车的整体造型,并接受发动机的动力,使汽车产生运动,保证 正常行驶。底盘由传动系、行驶系、转向系和制动系四部分组成。
传动系简介
传动系一般由离合器、变速器、万向传动装置、主减速器、差速器和半轴等组成。
一.传动系的功用
汽车发动机所发出的动力靠传动系传递到驱动车轮。传动系具有减速、变速、倒车、中断动力、轮间差速和轴间差速等功能,与发动机配合工作,能保证汽车在各种工况条件下的正常行驶,并具有良好的动力性和经济性。
二.传动系的种类和组成
传动系可按能量传递方式的不同,划分为机械传动、液力传动、液压传动、电传动等。
行驶系
行驶系由汽车的车架、车桥、车轮(注意)和悬架等组成。
汽车的车架、车桥、车轮和悬架等组成了行驶系,行驶系的功用是:
接受传动系的动力,通过驱动轮与路面的作用产生牵引力,使汽车正常行驶;
承受汽车的总重量和地面的反力;
缓和不平路面对车身造成的冲击,衰减汽车行驶中的振动,保持行驶的平顺性;
与转向系配合,保证汽车操纵稳定性。
转向系简介
汽车上用来改变或恢复其行驶方向的专设机构称为汽车转向系统。
转向系统的基本组成
(1)转向操纵机构 主要由转向盘、转向轴、转向管柱等组成。
(2)转向器 将转向盘的转动变为转向摇臂的摆动或齿条轴的直线往复运动,并对转向操纵力进行放大的机构。转向器一般固定在汽车车架或车身上,转向操纵力通过转向器后一般还会改变传动方向。
(3)转向传动机构 将转向器输出的力和运动传给车轮(转向节),并使左右车轮按一定关系进行偏转的机构。
转向系统的类型及工作原理
按转向能源的不同,转向系统可分为机械转向系统和动力转向系统两大类。
制动系简介
汽车上用以使外界(主要是路面)在汽车某些部分(主要是车轮)施加一定的力,从而对其进行一定程度的强制制动的一系列专门装置统称为制动系统。其作用是:使行驶中的汽车按照驾驶员的要求进行强制减速甚至停车;使已停驶的汽车在各种道路条件下(包括在坡道上)稳定驻车;使下坡行驶的汽车速度保持稳定。
对汽车起制动作用的只能是作用在汽车上且方向与汽车行驶方向相反的外力,而这些外力的大小都是随机的、不可控制的,因此汽车上必须装设一系列专门装置以实现上述功能。
分类:
(1) 按制动系统的作用
制动系统可分为行车制动系统、驻车制动系统、应急制动系统及辅助制动系统等。用以使行驶中的汽车降低速度甚至停车的制动系统称为行车制动系统;用以使已停驶的汽车驻留原地不动的制动系统则称为驻车制动系统;在行车制动系统失效的情况下,保证汽车仍能实现减速或停车的制动系统称为应急制动系统;在行车过程中,辅助行车制动系统降低车速或保持车速稳定,但不能将车辆紧急制停的制动系统称为辅助制动系统。上述各制动系统中,行车制动系统和驻车制动系统是每一辆汽车都必须具备的。
(2)按制动操纵能源
制动系统可分为人力制动系统、动力制动系统和伺服制动系统等。以驾驶员的肌体作为唯一制动能源的制动系统称为人力制动系统;完全靠由发动机的动力转化而成的气压或液压形式的势能进行制动的系统称为动力制动系统;兼用人力和发动机动力进行制动的制动系统称为伺服制动系统或助力制动系统。
(3)按制动能量的传输方式
制动系统可分为机械式、液压式、气压式、电磁式等。同时采用两种以上传能方式的制动系称为组合式制动系统。
动系统一般由制动操纵机构和制动器两个主要部分组成。
(1) 制动操纵机构
产生制动动作、控制制动效果并将制动能量传输到制动器的各个部件,如图中的2、3、4、6,以及制动轮缸和制动管路。
(2) 制动器
产生阻碍车辆的运动或运动趋势的力(制动力)的部件。汽车上常用的制动器都是利用固定元件与旋转元件工作表面的摩擦而产生制动力矩,称为摩擦制动器。它有鼓式制动器和盘式制动器两种结构型式。
⑹ 扭矩/扭力是怎么回事
如果你看不懂,就不要提这么愚蠢的问题.自己已经很愚蠢了,还要提这么愚蠢的问题.一看你自己就是个蠢蛋,还会骂人呢!哈哈哈......
还是我来回答你的愚蠢问题吧,记住喽!
扭矩
扭矩是使物体发生转动的力。发动机的扭矩就是指发动机从曲轴端输出的力矩。在功率固定的条件下它与发动机转速成反比关系,
转速越快扭矩越小,反之越大,它反映了汽车在一定范围内的负载能力。在某些场合能真正反映出汽车的“本色”,例如启动时或在山区行驶时,扭矩越高汽车运行的反应便越好。以同类型发动机轿车做比较,扭矩输出愈大承载量愈大,加速性能愈好,爬职力愈强,换挡次数愈少,对汽车的磨损也会相对减少。尤其在轿车零速启动时,更显示出扭矩高者提升速度快的优越性。
发动机的扭矩的表示方法是牛米(N.m)。同功率一样,一般在说明发动机最大输出扭矩的同时也标出每分钟转速(r/min)。最大扭矩一般出现在发动机的中、低转速的范围,随着转速的提高,扭矩反而会下降。
发动机的扭矩:
先看看两种发动机:
奥拓用的发动机:3缸,排气量 0.796,最大功率 26.5KW/5500转,最大扭距 60.5N.m/3000-4000转
奥迪A6用的发动机:6缸,排气量 2.393,最大功率(kW/r/min) 125/6000,最大扭矩(N.m/r/min) 230/3200
上面这两种发动机,排气量也就是汽缸容积是1:3,很好算,虽然有零头,但一个号称0.8,一个号称2.4;
功率是1:4.7,扭矩是1:3.8,大体上是同时上涨的,但又不是等比上涨。
由此可见,不同发动机的功率与扭矩,是一个大致对应的关系。一种发动机最大功率大,其最大扭矩通常同时也大。
这是两种区别很大的发动机的例子,而对任一种内燃机来说,它的功率是变化的,怠速和低速运转时,功率很小,扭矩也很小;随着转速的提高,功率在加大,扭矩也在加大,到达某个转速的时候,扭矩变得最大,此时功率也很大了。但是内燃机的特点又是:这时候功率并非最大,从上面的数据就可以看出来,这个阶段是同步增长,是一致的。再加快转速,功率继续加大,扭矩却变小了,这是不一致的地方。
扭矩不容易解释透,专业术语太多,还分外力偶矩、内力偶矩。
解释扭矩需要先解释什么是力矩,力矩是力对物体产生转动作用的物理量,又分为力对轴的矩和力对点的矩。
力对轴的矩,大小等于力在垂直于该轴的平面上的分量和此分力作用线到该轴垂直距离的乘积。
非专业的人懂这些真是没有用处。比如齿轮传动,原理是大齿轮带小齿轮,小齿轮转速会加快,大齿轮有40个齿,小齿轮有20个齿,大齿轮转一圈,小齿轮就要跟着转两圈。大齿轮每分钟1000转,小齿轮每分钟就2000转,很简单,懂到这里就行了。但要再问为什么小齿轮会转得快?这就麻烦了,要讲角速度,角速度是什么?十句八句20句也说不清,不画图还不行,非专业的人懂了也没有什么用处。
把扭矩理解成“扭力”,对非专业的人来说也没有太多的出入,但对专业人士来说就谬之千里,外行人可以看成一个扳手扭螺丝,手加在扳手上的力是一定的,那么扭力就决定于扳手的长短,扳手越长,螺丝得到的扭力越大。因此“外力偶矩”=圆周力乘旋转的半径。
为什么要打引号呢?因为要强调这不是真正的扭矩,但可以暂时理解为扭矩,真正的扭矩是“内力偶矩”,圆轴在外力矩的作用下匀速转动,在轴的横截面上必然产生内力,其大小等于截面一侧上外力矩的代数和。晕了没有?不必再继续解释了,总之一个驾驶员懂这些没啥用处。
回过头来,曲轴,由主轴颈、曲柄销、曲柄臂组成。螺丝就是主轴颈,是需要转动的轴,连杆连接曲柄销,等于加在扳手上的人手,扳手就是曲柄臂,扳手的长度,就是曲轴销的中心线与主轴颈的中心线的距离。
加在曲柄销上的力,来自于活塞,连杆只是一个传递作用,这个力越大,在这两中心线的距离不变的情况下,曲柄销从活塞得到的力越大,主轴颈得到的扭矩越大。反过来,在活塞给的力一定的情况下,两中心线离得越远,得到的扭矩也就越大。当然,还有一个很重要的因素,就是两中心线形成的直线与活塞行走轨道的夹角,接近90度时得到的扭矩最大,为了不越讲越复杂,越看脑子越乱,这就不去管它了。
对于自行车来讲,腿有如连杆,脚蹬子就是曲柄销,链轮轴就是主轴颈。链轮轴的扭矩决定于腿踩下的力,还决定于脚蹬杆的长度,以及脚蹬子的位置。脚蹬子在水平位置时得到的扭矩最大,因为加给它的力与圆周切线方向一致。
在内燃机里,决定功率的因素很多,但主要是活塞面积,在既定面积的基础上,采用不同燃料、化油器或者电喷技术、汽缸压力等等,都能在一定程度上影响到功率。但在功率定下来以后,决定扭矩的因素只有一个,就是曲柄销与主轴颈两中心线的距离。这个距离乘2就是活塞的行程。
为什么功率与扭矩在一定转速以后不一致了呢?
混合汽体燃烧膨胀对活塞的推力,在一定条件下达到最大值,这个时候就是扭矩最大值。而功率是与时间相关的,在同样的时间内,转速越快,功率越大,就如一个人搬砖头,一次搬五块,走着一分钟搬一趟,跑着一分钟来两回,五块是跑不动了,搬四块,两次也8块砖,效率当然不一样。而扭矩只与推力有关系,与时间无关系,只认你一次搬几块砖,不认你一共搬了多少。你一分钟跑三趟,一次3块,加起来9块砖,效率又提高了,但是从扭矩来说,你从五块降到四块、三块,一次不如一次。
这就是说,内燃机在最大扭矩的时候,汽体膨胀最厉害,产生的推力最大,过了这个转速,继续加快,汽体来不及充分燃烧膨胀就被匆忙排出,活塞单次得到的推力反而减小,因此扭矩减少。
这也是为什么汽车都有个经济车速的问题。疯狂旋转的发动机,汽油只有一小部分做了功,其余部分浪费了。
扭矩与功率的区别就在于前者与时间无关,只认单次推力,后者与时间有关,因此转速越快功率越大,功率上去了,扭矩反而下来了。
而功率与转速的关系,也不全是直接对应的,汽油机的最大功率通常是最高转速的时候,柴油机就不同,柴油机的最大功率同样在小于最高转速的时候。以BJ2024Z2Q1E(战旗吉普)所用的BJ493ZQ涡轮增压柴油发动机为例,最大功率68kw/3600r/min,而这种发动机的最高转速大于4000转。
扭矩有什么用呢?对大货车来说,决定拉多少货(实际上是车辆总重)能起步,扭矩不足动不了窝;对越野车来说,决定了能爬多大的坡,扭矩不足上不去;对轿车来说,决定了了加速性能,常见的指标就是从0到百公里时速需要多少秒。
发动机曲轴输出的扭矩是在相对固定的范围内,从零到最大扭矩,而这个扭矩却不是车轮所需要的,因此需要变速。变速的同时,扭矩就同比例地改变,以2:1的比例改变转速,扭矩增加一倍,反过来以1:2的速比,得到的转速大一倍,扭矩小50%(注意,减少不可说一倍,否则为零,小两倍成负数,就闹笑话了)。
变速的机构有好几种,因为车轮需要的扭矩大,因此各种变速基本上都是减速器,这与自行车相反,自行车的传动是一个加速器,大链轮带小飞轮。汽车上的变速装置,一个是差速器,更准确地说是差速器前面那个“主减速器”,它是固定速比的,大约4:1上下,再一个是我们平时说的变速器,它是可变速比的,常见的是四档变速器,最高档一般是直接档,就是主动轴与输出轴直接用齿套连接起来,1:1,五档变速器的最高档一般是超速档,零点几比一,超速档并不加快最高车速,这是人们经常发生误解的地方,在超速档下发动机不可能达到最高转速以得到最大功率,它的作用只能在中速行驶的时候经济一点,在中等转速最大扭矩的时候车速快一点,因此许多汽车在超车的时候需要先减档,以得到最快车速。
以夏利2000和其变形系列采用的五档变速器为例:倒档3.142,1档为3.181,2档为1.842,3档为1.250,4档为0.864,5档为0.707。
倒档的速比各车都相当于一档,有的比一档略大,有的比一档略小,但肯定不会相等。
除了变速器以外,越野车还装有分动器,它也可变速,以获得更大的扭矩。还有的重型汽车在轮子上安有行星齿轮,再变速一回。
先告诉你这么多,说多了你也记不住!
⑺ 皮卡扭力杆安装方法
皮卡扭力杆安装方法先把扭力杆大螺丝拆掉泄压,然后前面扭力杆座螺丝两颗拆掉,好了如果还拿不下来用锤轻敲。在底盘下面油箱的前面一左一右有两个调整螺丝。顺时针旋紧可是扭力增大同时前车头会相应提高离地间隙。如果调整螺丝已经调到头。可把调整臂拆下提前一个齿重新调整即可。
皮卡扭力杆的结构原理
随着甲胄的发展和工事筑垒的出现,东方发展出了以兽角、筋、角、硬木、丝等材料制作的复合弓,这是一种片簧结构,综合了多种生物材料的优点,使复合弓威力很大。
国外的实验表明,拉力小十几倍的复合弓射出箭的能量比740磅拉力的钢弩威力高出一倍多(这是因为钢的蓄能率很差,不到筋角材料的十几分之一,钢弓本身很重,大量的能量被消耗在弓身而不是被传递到箭上)。
希腊人设计的弩炮带有坚固的支架,主梁置于支架之上,其前端两侧装有两具扭力弹簧组,每个弹簧组带动一只弩臂,弩臂末端连接弓弦,弓弦正中是容纳抛射物的编制网袋。
⑻ 猎豹汽车~猎豹军用越野车,前后轮悬挂是什么方式减震是什么方式承重是什么方式
以下参数,来 自 官 网,供您参考:如有不是,请批评指正。谢谢
⑼ 猎豹黑金刚扭力杆一边硬一边软怎么回事
根据你的描述,这种情况是因为杆的两端并没有达到一定的力矩平衡,导致力分布不均,出现这样的情况。
⑽ 汽车方向盘控制键控制机器的原理是
汽车方向盘控制键控制机器的原理是:
要让汽车顺利转向,每个车轮都必须按不同的圆圈运动。由于内车轮所经过的圆圈半径较小,因此它的转向角度比外车轮要大。如果对每个车轮都画一条垂直于它们的直线,那么线的交点便是转向的中心点。转向拉杆具有独特的几何结构,可使内车轮的转向角度大于外车轮。
转向器分为几种类型。最常见的是齿条齿轮式转向器和循环球式转向器。
1、齿条齿轮式转向器
齿条齿轮式转向系统已迅速成为汽车、小型货车及SUV上普遍使用的转向系统类型。其工作机制非常简单。齿条齿轮式齿轮组被包在一个金属管中,齿条的各个齿端都突出在金属管外,并用横拉杆连在一起。小齿轮连在转向轴上。转动方向盘时,齿轮就会旋转,从而带动齿条运动。齿条各齿端的横拉杆连接在转向轴的转向臂上。
齿条齿轮式齿轮组有两个作用:
将方向盘的旋转运动转换成车轮转动所需的线性运动。
提供齿轮减速功能,从而使车轮转向更加方便。
2、循环球式转向系统。
其转动车轮的拉杆与齿条齿轮式转向系统稍有不同。循环球式转向器有一个埚杆。可以将此转向器想像为两部分。第一部分是带有螺纹孔的金属块。此金属块外围有切入的轮齿,这些轮齿与驱动转向摇臂的齿轮相结合。方向盘连接在类似螺栓的螺杆上,螺杆则插在金属块的孔内。转动方向盘时,它便会转动螺栓。由于螺栓与金属块之间相对固定,因此旋转时,它不会像普通螺栓那样钻入金属块中,而是带动金属块旋转,进而驱动转动车轮的齿轮。
螺栓并不直接与金属块上的螺纹结合在一起,所有螺纹中都填满了滚珠轴承,当齿轮转动时,这些滚珠将循环转动。滚珠轴承有两个作用:第一,减少齿轮的摩擦和磨损;第二,减少齿轮的溢出。如果齿轮溢出,则会在转动方向盘时感觉到。而如果转向器中没有滚珠,轮齿之间会暂时脱离,从而造成方向盘松动。
循环球式系统中的动力转向工作原理与齿条齿轮式系统类似。其辅助动力也是通过向金属块一侧注入高压液体来提供的。
在动力转向系统中,除齿条齿轮机制或循环球机制外,还有几个重要组件。
泵
用于转向的液压动力由回转式滑片泵提供。此泵由汽车发动机通过传送带和皮带轮进行驱动。它包含一组在椭圆形泵室内旋转的伸缩式叶片。
当叶片旋转时,这些叶片会从压力较低的回流管吸入液压油,并迫使其流向压力较高的出口。泵所提供的流量取决于汽车发动机的速度。泵的设计必须能在发动机怠速时提供足够的流量。因此,当发动机加速运转时,该泵提供的液体会远远超过实际的需要。
泵中含有一个减压阀,用于确保压力不会升得太高。当发动机高速运转时,由于泵中吸入了太多液体,因而更需要减压阀来降低压力。
旋转阀
只有驾驶员对方向盘施加作用力(如开始转向)时,动力转向系统才会向其提供支持。如果驾驶员没有施加作用力(如沿直线驾驶时),该系统则不会提供任何援助。方向盘上用于检测到这种作用力的设备叫旋转阀。
旋转阀的关键部位是扭力杆。扭力杆是一根细金属杆,在向其施加扭矩时,它会发生扭转。扭力杆的顶端连接在方向盘上,底端则连接在小齿轮或埚杆(用于转动车轮)上,这样扭力杆中的扭矩便等于驾驶员用来转动车轮的扭矩。驾驶员用来转动车轮的扭矩越大,扭力杆扭转的幅度就越大。
转向轴中的输入装置形成了滑阀总成的内部结构。它也与扭力杆的顶端相连。扭力杆的底端连接在滑阀的外侧。扭力杆还会转动转向器的输出装置,以使其与小齿轮或蜗杆相连,具体取决于汽车的转向系统类型。
当扭力杆扭转时,它会使滑阀的内侧相对于外侧旋转。由于滑阀的内侧也连接在转向轴上(从而与方向盘相连),因此滑阀内外侧之间的旋转程度取决于驾驶员在方向盘上所施加扭矩的大小。