法國新能源汽車發展現狀
A. 請教高手:淺析汽車新能源技術發展狀況論文怎樣寫
立幟汽車製造網 隨著世界能源危機和環保問題日益突出,汽車工業面臨著嚴峻的挑戰。一方面,石油資源短缺,汽車是油耗大戶,且目前內燃機的熱效率較低,燃料燃燒產生的熱能大約只有35%—40%用於實際汽車行駛,節節攀升的汽車保有量加劇了這一矛盾;另一方面,汽車的大量使用加劇了環境污染,城市大氣中CO的82%、NOx的48%、HC的58%和微粒的8%來自汽車尾氣,此外,汽車排放的大量CO2加劇了溫室效應,汽車雜訊是環境雜訊污染的主要內容之一。我國作為石油進口國和第二大石油消費大國,污染嚴重,世行認定的20個污染最嚴重的城市有16個在中國。國內汽車產品水平與國外差距很大,平均油耗高出10%—30%,排放約為15—20倍,汽車工業面臨的壓力更大。
上個世紀末以來世界各國和各大汽車公司以及國內各大科研機構和高等院校紛紛致力於開發清潔節能汽車,新能源汽車獲得了長足發展。汽油和柴油是傳統內燃機汽車的能源,利用除此以外的能源提供汽動力的汽車均可稱為新能源汽車。目前正在開發的新能源包括天然氣、液化石油氣、醇類、二甲醚、氫、合成燃料、生物氣、空氣以及電荷燃料電池等。
本文介紹新能源汽車技術的發展概況,並對其發展前景提出看法。
1 新能源汽車的種類及其特點
1.1 天然氣汽車和液化石油氣汽車
天然氣汽車又被稱為「藍色動力」汽車,主要以壓縮天然氣(CNG)、液化天然氣(LNG)、吸附天然氣(ANG)為燃料,常見的是壓縮天然氣汽車(CNGV)。液化石油氣汽車(LPGV)是以液化石油氣(LPG)為燃料。CNG和LPG是理想的點燃式發動機燃料,燃氣成分單一、純度高,與空氣混合均勻,燃燒完全,CO和微粒的排放量較低,燃燒溫度低因而NOx排放較少,稀燃特性優越,低溫起動及低溫運轉性能好。其缺點是儲運性能比液體燃料差、發動機的容積效率較低、著火延遲期較長。這兩類汽車多採用雙燃料系統,即一個汽油或柴油燃料系統和一個壓縮天然氣或液化石油氣系統,汽車可由其中任意一個系統驅動,並能容易地由一個系統過渡到另一個系統。康明斯與美國能源部正合作開發名為「先進往復式發動機系統(ARES)」的新一代天然氣發動機,根據開發目標,該發動機熱效率達50%(熱電聯產時達到80%以上),NOx排放量低於0.1g/km,製造成本為400450美元/kW,維護費用低於0.01美元/kwh,在滿足這些目標的同時,發動機具有較高的可靠性。
1.2 醇類汽車
醇類汽車就是以甲醇、乙醇等醇類物質為燃料的汽車,使用比較廣泛的是乙醇,乙醇來源廣泛,製取技術成熟,最新的一種利用纖維素原料生產乙醇的技術其可利用的原料幾乎包括了所有的農林廢棄物、城市生活有機垃圾和工業有機廢棄物。目前醇類汽車多使用乙醇與汽油或柴油以任意比例摻和的靈活燃料驅動,既不需要改造發動機,又起到良好的節能、降污效果,但這種摻和燃料要獲得與汽油或柴油相當的功率,必須加大燃油噴射量,當摻醇率大於15%—20%時,應改變發動機的壓縮比和點火提前角。乙醇燃料理論空燃比低,對發動機進氣系統要求不高,自燃性能差,辛烷值高,有較高的抗爆性,揮發性好,混合氣分布均勻,熱效率較高,汽車尾氣污染可減少30%以上。這種汽車最早由福特公司在20世紀80年代中期開發,到2003年底,美國有230多萬輛乙醇汽車,其中多數是道奇和克萊斯勒廂式車——2003年已賣出233466輛。
1.3 氫燃料汽車
氫是清潔燃料,採用氫氣作燃料,只需略加改動常規火花塞點火式發動機,其燃燒效率比汽油高,混合氣可以較大程度地變稀,所需點火能量小,有利於節約燃料。氫氣也可以加入其它燃料(如CNG)中,用於提高效率和減少N02排放。氫的質量能量密度是各種燃料中最高的一種,但體積能量密度最低,其最大的使用障礙是儲存和安全問題。寶馬公司一直致力於氫氣發動機研製,開發了多款氫發動機汽車,其裝有V12氫發動機的7系列轎車是世界上首批量產的氫發動機,該發動機可使用氫氣和汽油兩種燃料。
1.4 二甲醚汽車
二甲醚(DME)是一種無色無味的氣體,具有優良的燃燒性能,清潔、十六烷值高、動力性能好、污染少,稍加壓即為液體,非常適合作為壓燃式發動機的代用能源,使用該燃料的車輛可達到美國加州的超低排放標准。日本NKK公司成功地開發出用劣質煤生產二甲醚的設備,並且和住友金屬工業公司於1998年完成了用二甲醚作為汽車燃料的試驗,二甲醚汽車(DMEV)不會排放黑色氣體污染環境,產生的NOX比柴油少20%。
1.5 氣動汽車
以壓縮空氣、液態空氣、液氮等為介質,通過吸熱膨脹做功供給驅動能量的汽車稱為氣動汽車,氣動發動機不發生燃燒或其他化學反應,排放的是無污染物輻射的空氣或氮氣,真正實現了零污染。目前開發比較成功的是壓縮空氣動力汽車(APV),工作原理類似於傳統內燃機汽車,只不過驅動活塞連桿機構的能量來源於高壓空氣。APV介質來源方便、清潔,社會基礎設施建設費用不高,較容易建造。無燃料燃燒過程,對發動機材料要求低,結構簡單,可借鑒現有內燃機技術因而研發周期短,設計和製造容易。但目前APV能量密度和能量轉換率還不夠高,續駛里程短。1991年法國工程師Guy Negre獲得了壓縮空氣動力發動機的專利,並加盟MDI公司,2000年MDI公司推出的名為「進化」(evolution)的APV,質量僅700kg,其發動機質量僅為35kg,速度可達120km/h,一次充滿壓縮空氣可行駛200km,充氣費用僅為0.3美元,在城市中約可行駛10h,在壓縮空氣站充氣2min就可完成,用氣泵充氣3h可完成。
1.6 電動汽車
世界上第一輛電動車(EV)由美國人在19世紀90年代製造。EV大致分為蓄電池電動汽車(BEV)、燃料電池電動汽車(FCEV)和混合動力電動汽車(HEV)。電動汽車的一個共同特點是汽車完全或部分由電力通過電機驅動,能夠實現低排放和零排放。
蓄電池電動汽車是最早出現的電動汽車。使用鉛酸電池的汽車整車動力性、續駛里程與傳統內燃機汽車有較大的差距,而使用高性能鎳氫電池或者鋰電池又會使成本大大增加。而JtBEV都需有一定充電時間及相應的充電設備,使用場合受到了限制。燃料電池具有近65%的能量利用率,能夠實現零排放、低雜訊,國外最新開發的高性能燃料電池已經能夠實現幾乎與傳統內燃機汽車相當的動力性能,發展前景很好,但成本卻是制約其產業化的瓶頸。在加拿大進行的示範試驗表明,使用燃料電他的公共汽車製造成本為120萬加元,而使用柴油機的公共汽車僅為27.5萬加元。
混合動力汽車融合了傳統內燃機汽車和電動汽車的優點,同時克服了兩者的缺點,近年來獲得了飛速發展,並已經實現了產業化和商業化,PRIUS和INSIGHT兩款混合動力汽車的成功向人們展現了混合動力技術的魅力和巨大的市場潛力。
1.7 以植物油為燃料的汽車
為了尋找可代替石油的新能源,科學家也將目光投向了植物油,正在研製以植物油如大豆油、玉米油及向日葵油為原料的內燃機油。科學家們還在研究生物柴油,這是一種以植物油為原料的燃料,將來可作為柴油的替代品大量用於卡車和輪船。生物柴油中不含硫,因此不會對環境造成酸雨威脅。為生產生物柴油,化學家們正在對植物油進行酯化加工,使之變成甲基酯化合物,燃燒起來更干凈,發動機內殘留物也較少。
2 我國新能源汽車的發展概況
我國天然氣資源豐富,分布廣泛,海南、北京、上海、重慶等省市被列為國家燃氣汽車重點示範城市,各地均在燃油汽車基礎上研製開發改裝了壓縮天然氣汽車和液化石油氣汽車,主要用於計程車、公交客車、大型車輛和工程設施等。一汽—大眾公司開發了捷達LPG,上海交大研製成LPG轎車並和申沃客車聯合開發成功改裝型LPG城市bus,北京開發了CNG城市bus。
山西是產煤大省,甲醇汽車項目已進行多年,目前已達到商業運行階段,所用甲醇汽車採用靈活燃料系統,既可用甲醇,也可用汽油,將乙醇當作有氧燃料使用,現在在河北和黑龍江等地推廣。同時國家制定了乙醇汽油燃料相關標准。我國雲崗汽車公司大同汽車製造廠開發了甲醇中巴車。
我國煤炭資源豐富,政府支持以煤炭為原料製造車用燃料項目。煤直接液化和間接液化製取車用燃料的項目正在積極進行。「十五」期間在雲南和陝西建立了煤直接液化示範廠,以煤為原料合成石油或二甲醚等車用燃料。西安交通大學與中國科學院煤化工研究所經過5年協同攻關,於2000年研製出了「超低排放二甲醚汽車」,通過在TYll00單缸柴油機及裝備有大連柴油機廠生產的CA498柴油機的麵包車上燃用二甲醚的試驗,發現發動機的功率可提高10%-15%,熱效率提高2—3個百分點,雜訊降低10%-15%。
我國從事燃料電池研究的單位有20餘家,質子交換膜(PEM)燃料電池技術已取得較大進展,但與國外還有不小差距,例如,國外將功率50—80kW的PEM燃料電池用於轎車,而我國最大的PEM燃料電池單堆功率為5kW,離轎車使用相距甚遠。我國的金屬燃料電池技術已經達到世界先進水平。
我國的鎳氫電池和鋰電池技術水平也已經達到國際先進水平,比亞迪在2005年上海車展展出的E1電動車已經具備了很好的整車動力性能。
目前國內對壓縮空氣動力汽車的研究報道最多的是浙江大學,他們已經開發出壓縮空氣動力摩托車研究平台,探索出不少有益的結論,正在進一步深入研究,此外重慶大學和同濟大學也做過一些探索性研究。應當說APV在國內的發展才剛剛起步。
3 代用燃料汽車的發展前景
在各種汽車代用燃料中,LPG和CNG最方便投入使用,而且目前已經具有好的配套基礎設施。在排放和經濟性能要求較高而動力性能要求一般的公共交通領域具有很好的應用前景,美國近年來新型公交客車中天然氣汽車就占據了較大比例。在中國這樣的農業大國特別是一些農業大省,乙醇資源豐富,乙醇汽車有良好的應用前景。二甲醚等合成燃料具有很好的排放特性,也將具有很好的應用前景,特別是作為代用柴油應用於混合動力汽車。混合動力汽車毫無疑問是下一代汽車動力系統的主要形式。
蓄電池電動汽車的使用性能不如混合動力汽車和燃料電池汽車,且成本高。氫燃料發動機的能量利用率不如氫氧燃料電池。因而蓄電池電動汽車和氫發動機汽車的發展前景不是十分樂觀。當然隨著太陽能電池技術的發展和突破,也許純電動汽車能迎來一個不錯的發展局面。壓縮空氣動力汽車雖然實現了零污染,但其整車性能與傳統汽車相差太遠,只能在較小的范圍內應用於特定場合。
燃料電池是目前技術條件下能量利用率最高的車用能源。燃料電池的比能量可達200—350Wh/kg,為鋰離子電池的2—3倍;能量轉換效率高達60%~80%,是汽油機或柴油機的1.5~2倍,能實現超低污染甚至零污染,而且燃料電池使用的氫能源是可再生的。目前以甲醇燃料電池技術最為成熟。國外各大石油公司和汽車均在致力於燃料電池汽車的研發以搶佔在未來汽車發展中的灘頭。戴姆勒—賓士汽車公司從1993年到2000年先後推出了NecarI—NecarⅣ和Nebas等系列FCEV,2001年5月Necar4在美國試車,功率55kW,最高車速145km/h,裝載行程450km,最新推出的Necar V-FCEV採用甲醇燃料電池。1997年Ballard動力公司和福特汽車公司組建了Xcellsis公司開發燃料電池轎車,美國AR—CO、殼牌、德士古等石油公司和加州CARB先後加盟,組成世界上最強大的燃料電池車開發聯盟。日本電力中央研究所正在開發一種全面使用耐熱陶瓷的燃料電池,電池在發電效率非常高的1000℃的高溫下工作,電解質的輸出功率達到1W/cm2,相當於傳統燃料電池的5倍。EvomR公司致力於開發鋁和鋅燃料電池,已具有相當水平。
總之對代用燃料的綜合評價應考慮以下因素:燃料成本;車輛成本;對進口石油的依賴程度;有效能源利用率;溫室效應;排放污染;生產、儲運、分銷、加註設施;裝載行駛里程和加註時間;安全性。基於這些因素,目前最容易投入使用的代用燃料是CNG和LPG。電、甲醇和乙醇的綜合評價指數都低於汽油。可以預計LPG和CNG以及乙醇的市場份額將會不斷增加。二甲醚和合成柴油在十年後其市場份額會快速穩定增長。混合動力汽車會進一步發展,迅速增加市場份額。而燃料電池汽車會在20年之後開始實現產業化逐漸增加市場份額。傳統汽油機汽車的市場份額會在20年之後開始出現明顯的下降,但柴油車會在重型車輛領域繼續保持很高的市場份額。
4 結束語
在未來的20年內,汽油和柴油仍是汽車主要的能量來源,但汽油和柴油的質量要求越來越高,發動機技術將快速發展以提高能量利用率。代用燃料會得到迅速運用,天然氣汽車和乙醇汽車會率先大規模投入使用,二甲醚和合成燃料會逐步擴大應用。
混合動力系統會得到快速發展和應用,混合動力汽車將至少在30年內都是汽車工業最切實可行的解決能源問題和污染問題的途徑。因此應當整合資源加速混合動力汽車的開發,搶占汽車技術發展的新高地。
燃料電池是最有前途的車用能量,也是未來汽車的主要能量源,國內石油工業應該與汽車工業聯手開發先進的燃料電池技術,搶占未來先進汽車技術的前沿陣地!
B. 重壓之下的歐洲車企,還在推出續航低於200公里的純電動
不同於中國市場基於電池能量密度和續航里程分階段補貼,法國的政策對主流實用性車的輔助更為明顯,在這樣的補貼力度下,購買一輛雷諾Zoe的成本將會更低。而與雷諾Zoe相似的新車,TwingoZE,續航里程只有180公里的微型純電動車,也同樣適合在法國推廣。
今年日內瓦車展上,續航里程不足200公里的新車仍不少,這是歐洲市場純電動車發展的一個特點,類似於中國的微型純電動車結合不同城市的發展特點以及共享出行的需要,這類車型銷量增長也能夠幫助車企解決排放限值的問題。
圖|來源於網路
本文來源於汽車之家車家號作者,不代表汽車之家的觀點立場。
C. 新能源汽車發展前景如何很多人不看好的原因在哪裡
買車不是難事,搖號才是難事。2月26日,北京市釋放出5.4萬個個人新能源購車指標,只要購買新能源電動汽車就可以馬上獲得綠色牌照。對於北京上海想要購車的用戶來說確實是可以解決燃眉之急的。目前,像德國、法國等國家已經明確公布了停止銷售燃油車的時間表,中國目前來說還沒有計劃啟動,但此前工信部有透露過即將啟動燃油車退出市場的時間安排表。我國順應國際汽車產業發展趨勢很大一方面的原因是環境問題:
據了解,截至2016年底,我國汽車保有量接近2億輛,資源能源和環境壓力形勢嚴峻。
就2016年的市場表現看,辛國斌認為,從現在到2025年應該是汽車產業戰略轉型最為劇烈的幾年。對傳統汽車的節能減排要求、新能源汽車的技術要求都會越來越高。從技術和環境的角度出發,逐步停止生產和銷售傳統燃油車也是必然之路。
D. 未來的新能源如何德國與法國為此也是下了血本
歐洲的藍圖:隨著汽車行業的不斷發展,目前新能源汽車也是不斷的占據現在汽車市場的份額,新能源汽車也成為了未來汽車市場的大勢所趨。而我國的新能源是走在世界的前列,我國的電池製造商寧德時代也在德國建造了電池工廠。而近日,有外媒報道,德國與法國已經制定了一套關於電池工廠的藍圖。 目前兩國也是計劃在歐洲共同的推動一項總投資高達50億歐元(約合人民幣383億元)的新能源電池項目,總產能也約為48gwh。
寧德時代鋰電池的領頭羊:不僅如此德國的經濟與能源部也是發布了聲明,很大的程度上展現出了歐盟的各國計劃與亞洲競爭對手一較高下的決心。他們還認為特斯拉目前在電動車的領域已是占據北美地區的主導地位,遠遠的超過其他競爭對手。 不過在鋰電池方面來看的話,我國的鋰電池的「領頭羊」寧德時代已然已經占據了全球電池市場的主導地位。這個也是法國和德國作為汽車生產大國想要和我國在這方面一決高下的一個原因。
歐洲的壯志雄心:而且隨著全球氣候不斷變暖的問題,目前歐洲各國政府也都是打算收緊汽車尾氣排放標准,並且一定程度上去限制生產及再回收過程中的碳排放量,對於這一個行動也是十分的有可能對這些來自亞洲的電池產品推廣造成一定的阻礙。 值得一提的是. 德國經濟與能源部長peter Altmaier也是早在去年的時候就已經放出豪言:歐洲的電池電芯可不是中國產的便宜貨能夠媲美的。對於這個言論還是有著許多的網友表示不服氣的。
目前的情況:近日也有外媒報道稱,德國也在呼籲歐洲的電池製造商們和汽車製造商們成立一個企業的聯盟,以便於滿足電動汽車電池預期增長的需求,則也算是真正的與目前占據電池主導地位的亞洲電池生產商展開競爭。 . 還有外媒報道,根據目前的情況,到2025年的時候德國的電動車銷量或將達到700萬輛的程度,歐盟的電池電芯市場的市值也將高達2500億歐元(約合人民幣1.9萬億元)的高度,而對於這個報道,具體情況還得看之後歐洲方面的表現,不過按照現在的趨勢來看,亞洲的優勢還是更大的,畢竟領先的優勢還是十分的巨大。寧德時代不斷發展:而作為中國的最大的電池廠商之一,我們的寧德時代也是不斷的在發展進步中,在接下寶馬的高價電池大單後,也是在歐洲建立起了的第一家的海外電池工廠,地址也是選在了德國的圖林根州。 而寧德時代就目前的形式表示,他們也是正在就向巴斯夫公司提供更多原材料進行談判,而且該公司計劃投資4億歐元(4.57億美元)在歐洲建造電池的生產工廠。
大家認為這次歐洲推50億歐元電池的項目嗎,是否能夠在未來的歐洲占據主導地位呢?
"
本文來源於汽車之家車家號作者,不代表汽車之家的觀點立場。
E. 新能源汽車的歷史發展
中國新能源汽車產業始於21世紀初。2001年,新能源汽車研究項目被列入國家「十五」期間的「863」重大科技課題,並規劃了以汽油車為起點,向氫動力車目標挺進的戰略。「十一五」以來,我國提出「節能和新能源汽車」戰略,政府高度關注新能源汽車的研發和產業化。
2008年,新能源汽車在國內已呈全面出擊之勢。2008年成為我國「新能源汽車元年」。2008年1-12月新能源汽車的銷量增長主要是乘用車的增長,1-12月新能源乘用車銷售899台,同比增長117%,而商用車的新能源車共銷售1536台,1-12月同比下滑17%。
2009年,在密集的扶持政策出台背景下,我國新能源汽車駛入快速發展軌道。雖然新能源汽車在中國汽車市場的比重依然微乎其微,但它在中國商用車市場上的增長潛力已開始釋放。2009年1-11月,新能源乘用車銷量同比下降61.96%,至310輛。2009年1-11月,新能源商用車——主要是液化石油氣客車、液化天然氣客車、混合動力客車等——銷量同比增長178.98%,至4034輛。相比在乘用車市場的冷遇,「新能源汽車」在中國商用車市場已開始迅猛增長。
2010年,我國正加大對新能源汽車的扶持力度,2010年6月1日起,國家在上海、長春、深圳、杭州、合肥等5個城市啟動私人購買新能源汽車補貼試點工作。2010年7月,國家將十城千輛節能與新能源汽車示範推廣試點城市由20個增至25個。選擇5個城市進行對私人購買節能與新能源汽車給予補貼試點。新能源汽車正進入全面政策扶持階段。
F. 2020年,新能源汽車發展拐點已至
五、說在最後的話:
2020年新能源市場的開端會是艱難的,但2020年的發展對於消費者而言是喜聞樂見的,對於車企來說,會是機會與挑戰並存的。
本文來源於汽車之家車家號作者,不代表汽車之家的觀點立場。
G. 歐洲新能源汽車發展不力,到底誰應該背鍋
上周六的法蘭克福車展有點亂,成千上萬人在車展展館周邊遊行,他們舉著「Make Love Not CO2的標語」,抗議汽車產業排放二氧化碳。
汽車很明顯是此次抗議的目標,抗議者們在大眾、寶馬、戴姆勒和豐田等公司高管的肖像上用排氣管替代他們的性器官。他們要求車企們停止銷售排放大戶SUV車型。2017年,由於SUV車型銷量的快速上漲,歐洲連續10年走低的新車CO2排放量逆轉上揚,全行業CO2排放量上升2克,達到120.4克/公里。
客觀數據也許能證明車企的觀點。一方面,歐洲新能源車型銷量佔比僅有1.5%,且其中一半車型為插電式混合動力車型,因為PHEV車型可以不那麼依賴充電樁。另一方面,在充電樁設施普遍缺失的國家(每公里充電樁數少於1),新能源車型銷量佔比低於1%。
汽車企業預測,到2030年,歐洲需要230萬個充電樁才能滿足需求。但目前整個歐盟還不到14.5萬個充電樁。其中四分之三位於歐盟28個國家中的4個國家——德國、英國、法國和荷蘭。
中國政府在新能源產業領域的扶持力度顯然要強於歐洲。數據顯示,截至2019年8月,全國公共充電樁和私人充電樁總計保有量為108萬台,同比增長67.8%。得益於充電樁數量的大幅增長,中國純電動車型銷量佔比達75%,3倍於插電式混合動力。
H. 新能源汽車有哪些發達國家在推行(五個)
很多國家都在推行新能源車,比如說日本,韓國,德國,美國,包括我們中國。
I. 新能源的種類和發展現狀,發展趨勢
人類生存和發展的三要素
物質、能量與信息。
因此,能源的發展史直接影響人類的發展史。
我們人類生存與發展中最具有決定性意義的要素是三個:¾¾ 物質、能量和信息。
組成我們的世界是物質;人類生存活動決定於對信息的認知和反應;而維持生命,從事發展的活動又地要通過消耗能量來進行。
一切能量來自能源,人類離不開能源。能源是人類生存、生活與發展的主要基礎。能源科學與技術,能源利用的發展在人類社會進步中一直扮演著及其重要的角色。
能源發展的里程碑 可以這么說,每一次能源利用的里程碑式發展,都伴隨著人類生存與社會進步的巨大飛躍。幾千年來,在人類的能源利用史上,大致經歷了這樣四個里程碑式的發展階段:原始社會火的使用,先祖們在火的照耀下迎來了文明社會的曙光;18世紀蒸汽機的發明與利用,大大提高了生產力,導致了歐洲的工業革命;19世紀電能的使用,極大地促進了社會經濟的發展,改變了人類生活的面貌;20世紀以核能為代表的新能源的利用,使人類進入原子的微觀世界,開始利用原子內部的能量。
未來對能源的要求
有足夠滿足人類生存和發展所需要的儲量,並且不會造成影響人類生存的環境污染問題。
未來對能源的需求 未來的人類社會依然要依賴於能源,依賴於能源的可持續發展。因此,我們須現在就很清楚地了解地球上的能源結構和儲量,發展必須開發的能源利用技術,才能使人類的生存得於永久維持。
而我們賴於生存的能源是取之不盡用之不完的嗎?回答是:不是,也是。事實上,進入21世紀後,人類目前技術可開發的能源資源已將面臨嚴重不足的危機,當今煤、石油和天然氣等礦石燃料資源日益枯竭,甚至不能維持幾十年。因此,必須尋找可持續的替代能源。而近半世紀的核能和平利用,已使核能已成為新能源家屬中迄今為止能替代有限礦石燃料的唯一現實的大規模能源。而且,未來如能實現核能的徹底利用,人類的能源將是無窮的。
除了物質、能量和信息三大因素外,人類對安全的要求也越來越重要了。安全包括社會安全、健康安全和環境安全等。它們同能源的關系也是非常密切的。現在利用的能源已造成了大量的環境污染問題,嚴重影響了人類的生存。因此,未來對能源的要求將不僅是儲量充足,而且還必須是清潔的能源。相對其它化石能源而言,核能的和平利用已充分證明了核能是清潔的能源之一。
u 能源的定義與源頭
究竟什麼是「能源」呢?《科學技術網路全書》是這樣說的:「能源是可從其獲得熱、光和動力之類能量的資源」;《大英網路全書》說:「能源是一個包括著所有燃料、流水、陽光和風的術語,人類用適當的轉換手段便可讓它為自己提供所需的能量」。可見,能源是呈多種形式的、可以相互轉換的能量的源泉。簡而言之,能源是自然界中能為人類提供能量的物質資源。
能源的源頭
來自地球以外天體的能源(如太陽能)、地球本身蘊藏的能源(如地熱、核能)、地球與其它天體相互作用產生的能源(如潮汐)。
而能源是產生能量的源頭。
人們通常按形態與應用方式對能源進行分類。一般分為:固體燃料、液體燃料、氣體燃料、水能、電能、太陽能、生物質能、風能、核能、海洋能和地熱能。其中,前三類統稱化石燃料或化石能源。已被人類認識的這些能源,在一定條件下可以轉換為人們所需的各種形式的能量。比如薪柴和煤炭,加熱到一定溫度,能和氧氣化合並放出大量熱能,可以直接用來取暖,也可用來產生蒸汽推動汽輪機,再帶動發電機,使熱能變成機械能,再變成電能。把電送到工廠、機關和住戶,又可以轉換成機械能、光能或熱能。
在我們生活的地球上,能源形形色色。總起來說有三個初始來源。
太陽能
地球
來自地球外部天體的能源(主要是太陽能)人類所需能量的絕大部分都直接或間接地來自太陽。正是各種植物通過光合作用把太陽能轉變成化學能在植物體內貯存下來。煤炭、石油、天然氣等化石燃料也是由古代埋在地下的動植物經過漫長的地質年代形成的。它們實質上是由古代生物固定下來的太陽能。此外,水能、風能、波浪能、海流能等也都是由太陽能轉換來的。
地球本身蘊藏的能量 通常指與地球內部的熱能有關的能源和與原子核反應有關的能源。
與地球內部的熱能有關的能源,我們稱之為地熱能。溫泉和火山爆發噴出的岩漿就是地熱的表現。地球可分為地殼、地幔和地核三層,它是一個大熱庫。地殼就是地球表面的一層,一般厚度為幾公里至70公里不等。地殼下面是地幔,它大部分是熔融狀的岩漿,厚度為2900公里。火山爆發一般是這部分岩漿噴出。地球內部為地核,地核中心溫度為2000度。可見,地球上的地熱資源貯量也很大。
與原子核反應有關的能源正是本書要介紹的核能。原子核的結構發生變化時能釋放出大量的能量,稱為原子核能,簡稱核能,俗稱原子能。它則來自於地殼中儲存的鈾、鈈等發生裂變反應時的核裂變能資源,以及海洋中貯藏的氘、氚、鋰等發生聚變反應時的核聚變能資源。這些物質在發生原子核反應時釋放出能量。目前核能最大的用途是發電。此外,還可以用作其它類型的動力源、熱源等。
來自星球引力的能量 指由於地球與月球、太陽等天體相互作用的形成的能源。地球、月亮、太陽之間有規律的運動,造成相對位置周期性的變化,它們之間的引力隨之變化使海水漲落而形成潮汐能。與上述二類能源相比,潮汐能的數量很小。全世界的潮汐能摺合成煤約為每年30億噸,而實際可用的只是淺海區那一部分,每年約可摺合為6000萬噸煤。
u 能源結構與儲量
地球上有哪些能量資源可供我們使用?它們還能維持多久?我們該怎麼辦?
能源的種類
一次能源:煤炭、石油、核能等自然界天然能量資源;
二次能源:汽油、電力、蒸汽等人工製造的能量資源,
一次能源和二次能源 能源按其生成方式,分為天然能源(一次能源)和人工能源(二次能源)兩大類。天然能源是指自然界中以天然形式存在並沒有經過加工或轉換的能量資源,如煤炭、石油、天然氣、核燃料、風能、水能、太陽能、地熱能、海洋能、潮汐能等;人工能源則是指由一次能源直接或間接轉換成其他種類和形式的能量資源,如煤氣、汽油、煤油、柴油、電力、蒸汽、熱水、氫氣、激光等。
常規能源和新能源 其中,已被人類廣泛利用並在人類生活和生產中起過重要作用的能源,稱為常規能源,通常是指煤炭、石油、天然氣、水能等四種。而新近才被人類開發利用、有待於進一步研究發展的能量資源稱為新能源,相對於常規能源而言,在不同的歷史時期和科技水平情況下,新能源有不同的內容。當今社會,新能源通常指核能、太陽能、風能、地熱能、氫氣等。
煤的時代
能源結構的變遷 歷史上,伴隨著新的化石資源的發現和大規模開采與應用,世界的能源消費結構經歷了數次變革。18世紀的以煤炭替代柴薪,到19世紀中葉煤炭已經逐漸佔主導地位。20世紀20年代,隨著石油資源的發現與石油工業的發展,世界能源結構發生了第二次轉變,即從煤炭轉向石油與天然氣,到20世紀60年代,石油與天然氣已逐漸稱為主導能源,動搖了煤炭的主宰地位。但是,20世紀70年代以來兩次石油危機的爆發,開始動搖了石油在能源中的支配地位。以此同時,大部分化學能源的儲量日益減少,並伴隨著許多環境污染問題。
而人類對能源的需求卻在與日俱增。例如主要能源形式 地球能源的儲量估計
煤炭:~200年
石油、天然氣:~50年
核能:無窮多
之一的電力消耗逐年增加。根據統計,人口若每30年增加一倍,電力的需求量每八年就要增加一倍。
於是,20世紀末,能源結構開始經歷第三次轉變,即從以石油為中心的能源系統開始向以煤、核能和其它再生能源等多元化的能源結構轉變。特別是隨著時間的推移,核能的比例將不斷增長,並將逐步替代石油和天然氣而成為主要的大規模能源之一。
化學能的儲存量 煤炭、石油、天然氣還有多少年可以讓人類開采利用?據世界能源會議統計,世界已探明可採煤炭儲量共計15980億噸,預計還可開采200年。探明可採石油儲量共計1211億噸,預計還可開采30~40年。探明可采天然氣儲量共計119萬億立方米,預計還可開采60年。必須指出的是,煤炭、石油等直接燃燒用來生產電能與熱能實在太可惜了,且不說可能帶來的環境污染,它們還是很好的化工原料呢!
水能及新能源的潛力 那麼水能呢?我們知道,水力是可以長期開發利用的。但是,在那些大面積缺水、水力資源不豐富的國家和地區怎麼辦?再說,水能還有個季節性的問題。這些都使水能無法成為世界能源結構中唯一的主力軍。新能源中,太陽能雖然用之不竭,但代價太高,並且就目前的技術發展情況來看,在一代人的時間里不可能迅速發展和廣泛使用。其它新能源也是如此。其它一些能源與水能相似,它們的規模受到環境、季節、地理位置等條件的限制,如風能、潮汐能、地熱能等等。
易裂變核素
易發生裂變的原子只有鈾-235(U235)、鈈-239(Pu239)、鈾-233(U233)三種。而天然存在的易裂變元素只有鈾-235,鈈-239可由鈾-238生成,鈾-233可由釷-232(Th232)生成。
易聚變核反應
氘(D2)-氚(D3)反應。氘和氚都是氫原子的同位素。氘天然存在,而氚極少,必須由人工生成(如由鋰製造)。
核能--無窮的能源 核能分為裂變能和聚變能兩種。目前人類能正在用於和平利用的只有裂變能。可控聚變能利用技術正在攻克。
天然鈾的成份
天然鈾中佔99.3%為難裂變的鈾-238,僅有0.714%為易裂變的鈾-235。鈾-238可通過吸收一個中子變成易裂變的鈈-239。
作為發展核裂變能的主要原料之一的鈾,世界上已探明的鈾儲量約490萬噸,釷儲量約275萬噸。如果利用得好,可用2400~2800年。
聚變反應主要來源於氘-氚的核反應,氘來可大量自海水,氚可來自鋰。因此聚變燃料主要是氘和鋰,海水中氘的含量為0.03克/升,據估計地球上的海水量約為138億億米3,所以世界上氘的儲量約40億萬噸;地球上的鋰儲量雖比氘少得多,也有2000多億噸,用它來製造氚,足夠滿足人類對聚變能的需求。這些聚變燃料所釋放的能量比全世界現有能源總量放出的能量大千萬倍。按目前世界能源消費的水平,地球上可供原子核聚變的氘和氚,能供人類使用上千億年。如果人類實現了氘-氚的可控核聚變,核燃料就可謂「取之不盡,用之不竭了」,人類就將從根本上解決能源問題,這正是當前核科學家們孜孜以求的所以。聚變能源不僅豐富,而且安全、清潔。聚變產生的放射性比裂變小的多。
專家們預測,核能在未來將成為人類取之不盡的持久能源。
1.2 變臟的地球與干凈的核電
本節要點:回答的問題以下問題:現有的能源還能維持多久?能源利用可以不污染環境嗎?核能真是可持續能源嗎?
u 能源的可持續發展
必須尋找一些既能保證有長期足夠的供應量又不會造成環境污染的能源。
而目前人類面臨的問題正是:能源資源枯竭;環境污染嚴重。
能源利用與環境的可持續發展
能源危機
目前世界上常規能源的儲量有的只能維持半個世紀(如石油),最多的也能維持一、二百年(如煤)人類生存的需求。
今天,幾乎所有的工業化國家都面臨著兩個關繫到可持續發展的緊密相連的挑戰:保證令人滿意的長期能源供應和減少人類活動帶給環境的影響。能源利用與環境的可持續發展已成為關繫到人類未來生存與文明延續的一個重要問題。
能源供應危機 今天的世界人口已經突破60億,比上個世紀末期增加了2倍多,而能源消費據統計卻增加了16倍多。無論多少人談論「節約」和「利用太陽能」或「打更多的油井或氣井」或者「發現更多更大的煤田」,能源的供應卻始終跟不上人類對能源的需求。當前世界能源消費以化石資源為主,其中中國等少數國家是以煤炭為主,其它國家大部分則是以石油與天然氣為主。按目前的消耗量,專家預測石油、天然氣最多隻能維持不到半個世紀,煤炭也只能維持一二百年。所以不管是哪一種常規能源結構,人類面臨的能源危機都日趨嚴重。
濃煙滾滾的火電廠
能源對環境的污染 另一方面,特別是利用化石能源的過程也直接影響地球的環境,使大氣和水資源遭受嚴重污染。大氣中主要的五種污染物是:氮氧化物(如NO與NO2)、二氧化硫(SO2)、各種懸浮顆粒物、一氧化碳(CO) 大氣污染的主要源頭
目前世界上最嚴重的大氣污染來自化石能源燃燒造成的大氣中二氧化碳量的增加。帶來的主要後果是:酸雨、溫室效應和臭氧層破壞。
和碳氫化合物(如CH4、C2H6、C2H4等)。其來源主要有三個方面:① 煤、石油等化石燃料的燃燒;② 汽車排放的廢氣;③ 工業生產(如各種化工廠、煉焦廠等)產生的廢氣。而其中燃燒化石燃料的火力發電廠是最大的固定污染源。
1. 多元化
世界能源結構先後經歷了以薪柴為主、以煤為主和以石油為主的時代,現在正在向以天然氣為主轉變,同時,水能、核能、風能、太陽能也正得到更廣泛的利用。可持續發展、環境保護、能源供應成本和可供應能源的結構變化決定了全球能源多樣化發展的格局。天然氣消費量將穩步增加,在某些地區,燃氣電站有取代燃煤電站的趨勢。未來,在發展常規能源的同時,新能源和可再生能源將受到重視。在歐盟2010年可再生能源發展規劃中,風電要達到4000萬千瓦,水電要達到1.05億千瓦。2003年初英國政府公布的《能源白皮書》確定了新能源戰略,到2010年,英國的可再生能源發電量佔英國發電總量的比例要從目前的3%提高到10%,到2020年達到20%。
2. 清潔化
隨著世界能源新技術的進步及環保標準的日益嚴格,未來世界能源將進一步向清潔化的方向發展,不僅能源的生產過程要實現清潔化,而且能源工業要不斷生產出更多、更好的清潔能源,清潔能源在能源總消費中的比例也將逐步增大。在世界消費能源結構中,煤炭所佔的比例將由目前的26.47%下降到2025年的21.72%,而天然氣將由目前的23.94%上升到2025年的28.40%,石油的比例將維持在37.60%~37.90%的水平。同時,過去被認為是「臟」能源的煤炭和傳統能源薪柴、秸桿、糞便的利用將向清潔化方面發展,潔凈煤技術(如煤液化技術、煤氣化技術、煤脫硫脫塵技術)、沼氣技術、生物柴油技術等等將取得突破並得到廣泛應用。一些國家,如法國、奧地利、比利時、荷蘭等國家已經關閉其國內的所有煤礦而發展核電,它們認為核電就是高效、清潔的能源,能夠解決溫室氣體的排放問題。
3. 高效化
世界能源加工和消費的效率差別較大,能源利用效率提高的潛力巨大。隨著世界能源新技術的進步,未來世界能源利用效率將日趨提高,能源強度將逐步降低。例如,以1997年美元不變價計,1990年世界的能源強度為0.3541噸油當量/千美元,2001年已降低到0.3121噸油當量/千美元,預計2010年為0.2759噸油當量/千美元,2025年為0.2375噸油當量/千美元。
但是,世界各地區能源強度差異較大,例如,2001年世界發達國家的能源強度僅為0.2109噸油當量/千美元,2001~2025年發展中國家的能源強度預計是發達國家的2.3~3.2倍,可見世界的節能潛力巨大。
4. 全球化
由於世界能源資源分布及需求分布的不均衡性,世界各個國家和地區已經越來越難以依靠本國的資源來滿足其國內的需求,越來越需要依靠世界其他國家或地區的資源供應,世界貿易量將越來越大,貿易額呈逐漸增加的趨勢。以石油貿易為例,世界石油貿易量由1985年的12.2億噸增加到2000年的21.2億噸和2002年的21.8億噸,年均增長率約為3.46%,超過同期世界石油消費1.82%的年均增長率。在可預見的未來,世界石油凈進口量將逐漸增加,年均增長率達到2.96%。預計2010年將達到2930萬桶/日,2020年將達到4080萬桶/日,2025年達到4850萬桶/。世界能源供應與消費的全球化進程將加快,世界主要能源生產國和能源消費國將積極加入到能源供需市場的全球化進程中。
5. 市場化
由於市場化是實現國際能源資源優化配置和利用的最佳手段,故隨著世界經濟的發展,特別是世界各國市場化改革進程的加快,世界能源利用的市場化程度越來越高,世界各國政府直接干涉能源利用的行為將越來越少,而政府為能源市場服務的作用則相應增大,特別是在完善各國、各地區的能源法律法規並提供良好的能源市場環境方面,政府將更好地發揮作用。當前,俄羅斯、哈薩克、利比亞等能源資源豐富的國家,正在不斷完善其國家能源投資政策和行政管理措施,這些國家能源生產的市場化程度和規范化程度將得到提高,有利於境外投資者進行投資。
三、啟示與建議
1. 依靠科技進步和政策引導,提高能源效率,走高效、清潔化的能源利用道路
中國有自己的國情,中國能源資源儲量結構的特點及中國經濟結構的特色,決定在可預見的未來,我國以煤炭為主的能源結構將不大可能改變,我國能源消費結構與世界能源消費結構的差異將繼續存在,這就要求中國的能源政策,包括在能源基礎設施建設、能源勘探生產、能源利用、環境污染控制和利用海外能源等方面的政策應有別於其他國家。鑒於我國人口多、能源資源特別是優質能源資源有限,以及正處於工業化進程中等情況,應特別注意依靠科技進步和政策引導,提高能源效率,尋求能源的清潔化利用,積極倡導能源、環境和經濟的可持續發展。
2. 積極借鑒國際先進經驗,建立和完善我國能源安全體系
為保障能源安全,我國一方面應借鑒國際先進經驗,完善能源法律法規,建立能源市場信息統計體系,建立我國能源安全的預警機制、能源儲備機制和能源危機應急機制,積極倡導能源供應在來源、品種、貿易、運輸等方式的多元化,提高市場化程度;另一方面應加強與主要能源生產國和消費國的對話,擴大能源供應網路,實現能源生產、運輸、采購、貿易及利用的全球化.
J. 純電動汽車的發展現狀
國外著名汽車公司都十分重視研究開發電動汽車, 世界發達國家不惜投入巨資進行研究開發, 並制定了一些相關的政策、法規來推動電動汽車的發展。
美國正在大力研製和推廣使用燃料電池電動汽車和純電動汽車, 政府能源部與通用、福特和戴- 克三大汽車製造商聯合開發燃料電池電動汽車。美國已有7 個州加入了零排放計劃, 到規定年限後這些地區銷售的汽車必須為零排放, 即只能為純電動汽車和燃料電池電動汽車。
英國已有數萬輛電動汽車在使用;
法國是世界上推廣應用純電動汽車最成功的國家之一, 成立了電動汽車推廣應用國家部際協調委員會,巴黎和拉羅舍爾已經建立了比較完善的純電動汽車充電站網基礎設施, 制定了優惠的支持和激勵使用電動汽車的政策, 且已經初步形成了純電動汽車運行體系。
國際性大型運動會上, 電動汽車也成為各國展示其科技實力和環保意識的工具之一。亞特蘭大奧運會使用了純電動客車作為公務和電視轉播車,悉尼奧運會購買了英國近400 輛電動客車作為運動員接送車輛。混合動力電動汽車領域,
歐洲各大汽車廠商爭先恐後地推出了本公司研製的混合動力電動汽車, 甚至德國的博世等著名的零部件公司也積極與大汽車公司聯手開發混合動力電動汽車技術。美國已有近20 個城市試驗使用混合動力電動公交車,瑞典、法國、德國、義大利、比利時等國計劃在9 個歐洲城市開通混合動力電動公共汽車線路。燃料電池電動汽車斬露頭角, 國外企業界紛紛組成強大的跨國聯盟, 以期達到優勢互補的目的。 中國電動汽車雖然沒有歐美等國家起步早, 但國家從維護能源安全, 改善大氣環境, 提高汽車工業競爭力, 實現我國汽車工業的跨越式發展的戰略高度考慮,電動汽車研究一直是國家計劃項目, 並在2001 年設立了「電動汽車重大科技專項」。通過組織企業、高等院校和科研機構, 集中各方面力量進行聯合攻關, 現正處於研發勢頭強勁階段, 部分技術已經趕上甚至超過世界先進水平。「電動汽車重大科技專項」實施以來, 已成功開發出燃料電池汽車樣車, 累計運行數千公里; 混合動力客車已在武漢等地公交線路上試驗運行超過百萬公里; 純電動汽車已通過國家有關認證試驗。