電動汽車bms單片機
⑴ 單片機的CAN匯流排問題。希望大家能幫助我下。
不自帶CAN匯流排的單片機,可以用SJA1000(can控制器)+82C250(收發器),但是這個SJA1000是並口的,太多線了,如果不介意速度的話你可以用支持SPI的MCP2515.
自帶CAN匯流排的單片機,其實一般只帶了can控制器,不會帶收發器的,還是需要82C250(收發器)的,當然CAN的收發器有很多的,有82C252 /TJA1054都是的,收發器只是完成物理層電平的轉換,它一端是UART介面(TX,RX),另一端是CAN+,CAN-.
⑵ 電動汽車電池管理系統適合什麼單片機
基於單片機的動力電池管理系統的硬體設計時間:2010-05-04 11:10:19 來源:電子技術應用 作者:李練兵 梁 浩 劉炳山 電動汽車是指全部或部分由電機驅動的汽車。目前主要有純電動汽車、混合電動車和燃料電池汽車3種類型。電動汽車目前常用的動力來自於鉛酸電池、鋰電池、鎳氫電池等。 鋰電池具有高電池單體電壓、高比能量和高能量密度,是當前比能量最高的電池。但正是因為鋰電池的能量密度比較高,當發生誤用或濫用時,將會引起安全事故。而電池管理系統能夠解決這一問題。當電池處在充電過壓或者是放電欠壓的情況下,管理系統能夠自動切斷充放電迴路,其電量均衡的功能能夠保證單節電池的壓差維持在一個很小的范圍內。此外,還具有過溫、過流、剩餘電量估測等功能。本文所設計的就是一種基於單片機的電池管理系統[1]。 1 電池管理系統硬體構成 針對系統的硬體電路,可分為MCU模塊、檢測模塊、均衡模塊。 1.1 MCU模塊 MCU是系統控制的核心。本文採用的MCU是M68HC08系列的GZ16型號的單片機。該系列所有的MCU均採用增強型M68HC08中央處理器(CP08)。該單片機具有以下特性: (1)8 MHz內部匯流排頻率;(2)16 KB的內置Flash存儲器;(3)2個16位定時器介面模塊;(4)支持1 MHz~8 MHz晶振的時鍾發生器;(5)增強型串列通信介面(ESCI)模塊。 1.2 檢測模塊 檢測模塊中將對電壓檢測、電流檢測和溫度檢測模塊分別進行介紹。 1.2.1 電壓檢測模塊 本系統中,單片機將對電池組的整體電壓和單節電壓進行檢測。對於電池組整體電壓的檢測有2種方法:(1)採用專用的電壓檢測模塊,如霍爾電壓感測器;(2)採用精密電阻構建電阻分壓電路。採用專用的電壓檢測模塊成本較高,而且還需要特定的電源,過程比較復雜。所以採用分壓的電路進行檢測。10串錳酸鋰電池組電壓變化的范圍是28 V~42 V。採用3.9 M?贅和300 k?贅的電阻進行分壓,採集出來的電壓信號的變化范圍是2 V~3 V,所對應的AD轉換結果為409和614。 對於單體電池的檢測,主要採用飛電容技術。飛電容技術的原理圖如圖1所示[2],為電池組後4節的保護電路圖,通過四通道的開關陣列可以將後4節電池的任意1節電池的電壓採集到單片機中,單片機輸出驅動信號,控制MOS管的導通和關斷,從而對電池組的充電放電起到保護作用。 如圖1所示,為電池組後4節的保護電路圖,通過四通道的開關陣列可以將後4節電池的任意1節電池的電壓採集到單片機中,單片機輸出驅動信號,控制MOS管的導通和關斷,從而對電池組的充電放電起到保護作用。 以上6節電池可以用2個三通道開關切換陣列來實現。MAX309為1片4選1、雙通道的多路開關,通過選址實現通道的選擇。開關S5、S6、S7負責將電池的正極連接至飛電容的正極。開關S2、S3、S4負責將電池負極連接至飛電容的負極。三通道開關切換陣列結構與四通道開關切換陣列類似,只是通道數少1路。工作時,單片機發出通道選址信號,讓其中1路電池的正負極與電容連接,對電容進行充電,然後斷開通道開關,接通跟隨放大器的開關,單片機對電容的電壓進行快速檢測,由此完成了對1節電池的電壓檢測。若發現檢測電壓小於2.8 V,則可推斷出電池可能發生短路、過放或保護系統到電池的檢測線斷路,單片機將馬上發出信號切斷主迴路MOS管。重復上述過程,單片機即完成對本模塊所管理的電池的檢測。 1.2.2 電流采樣電路 電流采樣時,電池管理系統中的參數是電池過流保護的重要依據。本系統中電流采樣電路如圖2所示。當電池放電時,用康銅絲對電流信號進行檢測,將檢測到的電壓信號經過差模放大器的放大,變為0~5 V的電壓信號送至單片機。如果放電的電流過大,單片機檢測到的電壓信號比較大,就會驅動三極體動作,改變MOS管柵極電壓,關斷放電的迴路。比如,對於36 V的錳酸鋰電池來說,設定其保護電流是60 A。康銅絲的電阻是5 mΩ左右。當電流達到60 A時,康銅絲的電壓達300 mV左右。為提高精度,將電壓通過放大器放大10倍送至單片機檢測。 1.2.3 溫度檢測 電池組在充、放電過程中,一部分能量以熱量形式被釋放出來, 這部分熱量不及時排除會引起電池組過熱。如果單個鎳氫電池溫度超過55℃,電池特性就會變質,電池組充、放電平衡就會被打破,繼而導致電池組永久性損壞或爆炸。為防止以上情況發生,需要對電池組溫度進行實時監測並進行散熱處理。 採用熱敏電阻作為溫度感測器進行溫度采樣。熱敏電阻是一種熱敏性半導體電阻器,其電阻值隨著溫度的升高而下降。電阻溫度特性可以近似地用下式來表示: 1.3 均衡模塊 電池組常用的均衡方法有分流法、飛速電容均衡充電法、電感能量傳遞方法等。在本系統中,需要較多的I/O口驅動開關管,而單片機的I/O口有限,所以採取整充轉單充的充電均衡方法。原理圖如圖3所示。Q4是控制電池組整充的開關,Q2、Q3、Q5是控制單節電池充電的開關。以10節錳酸鋰電池組為例,變壓器主線圈兩端電壓為42 V,副線圈電壓為電池的額定電壓4.2 V。剛開始Q4導通,Q2、Q3、Q5截止,單節電池的電壓不斷升高,當檢測到某一節電池的電壓達到額定電壓4.2 V以後,電壓檢測晶元發出驅動信號,關閉Q4,打開Q2、Q3、Q5,整個系統進入單充階段,未充滿的電池繼續充電,以達到額定電壓的電池保持額定電壓不變。經測試,電壓差值不會超過50 mV。 2 SOC電量檢測 在鋰離子電池管理系統中,常用的SOC計算方法有開路電壓法、庫倫計演算法、阻抗測量法、綜合查表法[3]。 (1)開路電壓法是最簡單的測量方法,主要根據電池開路電壓的大小判斷SOC的大小。由電池的工作特性可知,電池的開路電壓與電池的剩餘容量存在著一定的對應關系。 (2)庫侖計演算法是通過測量電池的充電和放電電流,將電流值與時間值的乘積進行積分後計算得到電池充進的電量和放出的電量,並以此來估計SOC的值。 (3)阻抗測量法是利用電池的內阻和荷電狀態SOC之間一定的線性關系,通過測出電池的電壓、電流參數計算出電池的內阻,從而得到SOC的估計值。 (4)綜合查表法中電池的剩餘容量SOC與電池的電壓、電流、溫度等參數是密切相關的。通過設置一個相關表,輸入電壓、電流、溫度等參數就可以查詢得到電池的剩餘容量值。 在本設計中,從電路的集成度、成本、所選MCU的性能方面考慮,採用了軟體編程的方法。綜合幾種方法,採用庫倫計演算法比較合適。 (1)用C表示鋰電池組從42 V降到32 V時放出的總的電量。 (2)用η表示電流i經過時間t後,放出的電量與C的比值。 其中CRM為剩餘電量。令ΔCi=i×Δt,表示?駐t時間內電池組以i放電的放電量;或者是以i充電的充電量,剩餘電量實際上是對ΔCi的計算以及累加。設定合適的采樣時間Δt,測定當前的電流值,然後計算乘積,得到Δt時間內剩餘容量CRM的變化量,從而不斷更新CRM的值,即可實現SOC電量的檢測。 3 試驗結果 通過電池管理系統對錳酸鋰電池組進行充放電測試。圖4(a)為鋰電池組放電測試圖,放電電流為8 A,當電池組電壓降至32 V時,放電MOS管關斷。圖4(b)為充電的測試圖。充電結束4小時後,均衡完成。 本文的電池管理系統以M68HC08GZ16為核心,實現了對電池組單體電壓、電流、溫度信號的採集。充電電量平衡以後,單體電池的電壓差值不超過50 mV。整體系統運行性能良好,能夠滿足電動車動力電池組應用需要。
⑶ 電動汽車動力電池BMS,OBC,PEU,BCM的作用是什麼
BMS電池管理系統作用:准確估測動力電池組的荷電狀態,動態監測動力電池組的工作狀態,單體電池間的均衡。
OBC車載充電機,把通過交流介面的電源轉化為直流電為動力電池組充電。
PEU集成式控制系統一般集成了MCU(電機控制單元),DC-DC,OBC(車載充電機),PTC(車載加熱器)等功能。
BCM車身控制模塊。
⑷ 純電動汽車上的BMS是什麼意思
電池管理系統(BATTERY MANAGEMENTSYSTEM)電池管理系統(BMS)是電池與用戶之間的紐帶,主要對象是二次電池,主要就是為了能夠提高電池的利用率,防止電池出現過度充電和過度放電,可用於電動汽車,電瓶車,機器人,無人機等。
⑸ 請問國內目前使用的電池管理系統BMS,是通過什麼單片機軟體來設計的麻煩高手推薦下。
飛思卡爾就得用Freescale codewarrior 51的就用Keil 看你用什麼單片機了,上位機一般VB VC 挺多你自己研究下吧
⑹ 什麼是電動汽車bms十pack模式
電動汽車最主要的核心就是電池,現在的電動汽車都是用的鋰電池,拿特斯拉舉例:電池是由電池箱串聯的,每個電池箱都是由電芯串並聯組成的。
BMS是電池管理系統,對每個電芯及整車電壓進行監控,電芯的溫度、電壓等等進行檢測,每節電芯電壓超過4.2V時會報警,BMS會自動切斷大電,電機電控會停止工作。
PACK就是電池箱,BMS+PACK就是一個組合,為了更有效更安全的給汽車提供動力的一個組合。就像電機和電控,缺一不可
⑺ 智能新能源汽車單片機與傳統汽車單片機的區別
用電的電動汽車少了原本汽油汽車的機械化的傳動的系統布置。增加了電池和電子控制的設備。
所以,一旦車子要是發生了碰撞之類的事情,車子的變形程度,就跟以往的不一樣,受力分布也不一樣。
因為內部構造和設計不同,所以,對於安全意識,減震等問題,也要重新設計。
還有,就是電動的汽車沒電了要續航,要充電,而傳統的汽油汽車,則是加油。有些人覺得充電很煩,並且不踏實的事情,萬一車子在高速路上開到一半,停電了呢?
推翻傳統,關於創新這件事,對於科技來說,是一件不小的挑戰!
二,電動汽車的安全完善度。
因為內部設備的變動,傳統的一些安全意識考量已經全部被推翻。
受力不均衡,要從新考慮車子的防震,防爆問題。
安全意識這塊,要注意。但是因為是新型的科技,所以,安全這方面的事情,經驗可能不比傳統的汽油汽車要好。不過,科技總在進步,一些問題既然已經發現了,那它就有改善的可能性。現在市面上推出來的電子汽車,基本上各方面都不輸給傳統的汽油汽車。
三,電池的壽命。
據說現在市場的推出的電子汽車,它的電池壽命只有五年到十年之間。意思是,你車子開了五年或者十年之後,要換上新的電池。而這個電池的價值,也是不等的。起碼要兩萬以上,這也要根據你車子的價值來定。
有些人覺得,車子本身很便宜,又開了五六年,十來年的,本身就不止一塊電池的價值,這就導致了舊車像雞肋。所以,在最初買車的時候,也要考慮汽車電池的問題!
而對於創新技術來說,汽車的電池這個方面,就要著重的考量了。要用什麼材質的電池,更能持久的續航,更節省成本,用的更加久……
⑻ 新能源汽車中的VCU、BMS、PEU各代表什麼意思
整車控制器(VCU)、電機控制器(MCU)和電池管理系統(BMS)是最重要的核心技術,對整車的動力性、經濟性、可靠性和安全性等有著重要影響!
VCU是實現整車控制決策的核心電子控制單元,一般僅新能源汽車配備、傳統燃油車無需該裝置。
MCU是新能源汽車特有的核心功率電子單元,通過接收VCU的車輛行駛控制指令,控制電動機輸出指定的扭矩和轉速,驅動車輛行駛。
BMS能夠提高電池的利用率,防止電池出現過充電和過放電,延長電池的使用壽命,監控電池的狀態。
望採納!