電動汽車動力系統熱管理
Ⅰ 電動汽車熱管理系統三大組成部分是什麼,各包括那些迴路
純電動汽車充電站主要由配電系統、充電系統、電池調度系統和充電站監控系統組成,下面就為大家分別介紹。 1、充電站配電系統 配電系統為充電站的運行提供電源,它不僅提供充電所需電能,而且還要滿足照明、控制設備的需要,包括變配電所有設備、配電監控系統等。 2、充電站充電系統 充電系統是整個充電站的核心部分,根據電能補給方式的不同,氛圍地面單相充電和整車充電兩種充電系統,通常情況下,充電站採用單箱充電方式為更換下來的電池進行充電。單箱充電方式有利於提高電池組的均衡性,延長電池使用壽命。在配電站外配備4台75KW打工了充電機在應急情況下為整車充電使用。 3、充電站電池調度系統 電池調度系統對所有的電池實時進行數量、質量和狀態的額監控和管理,具備電池存儲、電池更換、電池重新配組、電池組均衡、電池組實際容量測試、電池故障的應急處理等功能。電池更換是電池調度系統的核心。自動更換方式是動力電池快速更換的主要方式,由更換機械裝置可控制系統組成的更換機器人完成。 4、充電站監控系統 充電監控系統是電動汽車充電站高效安全運行的保證,它實現對整個充電站的監控、調度和管理。 三大件為:1.新能源車的「油箱」:電池 2.決定動力的關鍵:電機 3.新能源汽車的「管家」:電控系統,
Ⅱ 動力電池的熱管理是指什麼
電動汽車的心臟,在方方面面影響著汽車的性能:能跑多少公里?最大加速度是多少?壽命如何?當然還有更重要的安全性能,上述問題均是電池不可推脫的責任。諸多因素影響著動力電池的性能,幫凶之一便是溫度。電動車主們都深有感觸,談溫色變。拿某款電動車型來說,明明有350公里的續航里程,到冬天後只剩原先的70%,很多人捨不得打開空調取暖,生怕影響到駕駛里程。實際上,高溫也同樣帶來電池的損害。公開的研究數據表明,一節索尼18650電池在55℃條件下循環500次,容量衰減近70%。
當前的電池熱管理方法有許多,諸如大家熟知的風冷散熱以及液冷散熱。由於空氣對流換熱系數相對較低,且強制風冷可能帶來較大的溫度差異,因此許多汽車廠商傾向於採用液冷板散熱方案帶來更好的用戶體驗。然而,隨著動力電池能量密度不斷提高、快速充電要求的提高以及對壽命要求的提升,迫切需要發展新的熱管理技術來解決當前的技術瓶頸,熱管這種高效導熱元件便是未來高性能動力電池熱管理系統最佳選擇。
Ⅲ 新能源汽車熱管理的方式有哪幾種
熱管理的方式由加熱和冷卻兩種形式。
Ⅳ 汽車也有免疫系統 純電動汽車熱管理系統淺析
隨著新能源汽車的逐漸普及,有越來越多的消費者開始逐漸接觸新能源汽車。但是對於大多數普通消費者來說,燃油車型的機構原理尚不能完全了解,更何況產品技術含量更高的新能源汽車了。因此,有必要通過通俗易懂的文字來介紹一下新能源汽車的相關內容。本次,我們就簡單介紹一下純電動汽車的熱管理系統,這樣對純電動汽車的「免疫系統」進行分析,希望可以對大家了解新能源汽車提供幫助。
純電動汽車並沒有熱源,因此需要使用標准輸出功率為4-5kW的高電壓PTC電加熱器為車內提供快速且足夠的熱量。而純電動汽車的余熱又不足以完全進行車廂加熱,因此需要熱泵系統進行加熱。
編輯點評:
其實,純電動汽車的熱管理系統還是非常復雜的,本文只是對該系統進行了簡要的介紹。而相關控制原理更是相當的復雜,但是作為普通消費者,只需要知道純電動汽車的熱管理系統就是車輛自身的免疫系統就夠了。因為高度智能化的純電動汽車已經逐步融入到大家的生活當中,大家的用車生活將會變得更加便捷、輕松。
本文來源於汽車之家車家號作者,不代表汽車之家的觀點立場。
Ⅳ 深度:研判ARCFOX αT「獨一無二」的動力電池熱管理控制策略
無疑,ARCFOXαT設定的「獨一無二」的動力電池熱管理控制策略,為的是在相對400伏、500-700伏高電壓平台較低的340伏電電壓平台,應用更大充電功率帶來的更高熱量(電流),對軟包三元鋰電芯進行更主動的散熱以獲得更好的車輛安全性。
當然,對於室外溫度低至多少攝氏度還會激活動力電池高溫散熱功能,對於高溫工況行車和充電時ARCFOXαT電動SUV的動力電池熱管理系統控制策略,以及電四驅系統扭矩如何在橋間分配,都將在後續測試稿件中體現。
未完待續。。。。。。
新能源情報分析網評測組出品
本文來源於汽車之家車家號作者,不代表汽車之家的觀點立場。
Ⅵ 比亞迪電動汽車 電池熱管理資料
1、比亞迪E6純電動車鐵電池技術的優點
(1)、 超長壽命,長壽命鉛酸電池的循環壽命在300次左右,最高也就500次,而磷酸鐵鋰動力電池,循環壽命達到2000次以上,標准充電(5小時率)使用,可達到2000次。同質量的鉛酸電池是「新半年、舊半年、維護維護又半年」,最多也就1—1.5年時間,而磷酸鐵鋰電池在同樣條件下使用,將達到7-8年。綜合考慮,性能價格比將為鉛酸電池的4倍以上。
(2)、 使用安全,磷酸鐵鋰完全解決了鈷酸鋰和錳酸鋰的安全隱患問題,鈷酸鋰和錳酸鋰在強烈的碰撞下會產生爆炸對消費者的生命安全構成威脅,而磷酸鐵鋰以經過嚴格的安全測試即使在最惡劣的交通事故中也不會產生爆炸。
(3)、 可大電流2C快速充放電,在專用充電器下,1.5C充電40分鍾內即可使電池充滿,起動電流可達2C,而鉛酸電池現在無此性能。
(4)、 耐高溫,磷酸鐵鋰電熱峰值可達350℃—500℃而錳酸鋰和鈷酸鋰只在200℃左右。工作溫度范圍寬廣(-20C--+75C),有耐高溫特性磷酸鐵鋰電熱峰值可達350℃—500℃而錳酸鋰和鈷酸鋰只在200℃左右。
(5)、 無記憶效應。可充電池在經常處於充滿不放完的條件下工作,容量會迅速低於額定容量值,這種現象叫做記憶效應。像鎳氫、鎳鎘電池存在記憶性,而磷酸鐵鋰電池無此現象,電池無論處於什麼狀態,可隨充隨用,無須先放完再充電。
(6)、 綠色環保。該電池不含任何重金屬與稀有金屬(鎳氫電池需稀有金屬),無毒(SGS認證通過),無污染,符合歐洲RoHS規定,為絕對的綠色環保電池證。鉛酸電池中卻存在著大量的鉛,在其廢棄後若處理不當,仍將對環境夠成二次污染,而磷酸鐵鋰材料無論在生產及使用中,均無污染,因此該電池又列入了「十五」期間的「863」國家高科技發展計劃,成為國家重點支持和鼓勵發展的項目。隨著中國加入WTO,中國電動自行車的出口量將迅速增大,而現在進入歐美的電動自行車已要求配備無污染電池。
2、比亞迪E6純電動車鐵電池技術存在缺陷
(1)、 導電性差、鋰離子擴散速度慢。高倍率充放電時,實際比容量低,這個問題是制約磷酸鐵鋰產業發展的一個難點。磷酸鐵鋰之所以這么晚還沒有大范圍的應用,這是一個主要的問題。但是,導電性差目前已經得到比較完美的解決:就是添加C或其它導電劑。目前在實際生產過程中通過在前驅體添加有機碳源和高價金屬離子聯合摻雜的辦法來改善材料的導電性(A123、煙台卓能正採用這種方法),研究表明,磷酸鐵鋰的電導率提高了7個數量級,使磷酸鐵鋰具備了和鈷酸鋰相近的電導特性。實驗室報道當0.1C充放電時,可以達到165mAh/g以上的比容量,實際達到135-145mAh/g,基本接近鈷酸鋰的水平;但是鋰離子擴散速度慢的問題到目前仍然沒有得到較好的解決,目前採取的解決方案主要有納米化LiFePO4晶粒,從而減少鋰離子在晶粒中的擴散距離,再者就是摻雜改善鋰離子的擴散通道,後一種方法看起來效果並不明顯。納米化已經有較多的研究,但是難以應用到實際的工業生產中,目前只有A123宣稱掌握了LiFePO4的納米化產業技術。
(2)、 振實密度較低。一般只能達到0.8-1.3,低的振實密度可以說是磷酸鐵鋰的很大缺點。所有磷酸鐵鋰正極材料決定了它在小型電池如手機電池等沒有優勢,所以其使用范圍受到一定程度的限制。即使它的成本低,安全性能好,穩定性好,循環次數高,但如果體積太大,也只能小量的取代鈷酸鋰。但這一缺點在動力電池方面不會突出。因此,磷酸鐵鋰主要是用來製作動力電池。
(3 )、 磷酸鐵鋰電池低溫性能差。盡管人們通過各種方法(例如鋰位、鐵位、甚至磷酸位的摻雜改善離子和電子導電性能,通過改善一次或二次顆粒的粒徑及形貌控制有效反應面積、通過加入額外的導電劑增加電子導電性等)改善磷酸鐵鋰的低溫性能,但是磷酸鐵鋰材料的固有特點,決定其低溫性能劣於錳酸鋰等其他正極材料。一般情況下,對於單只電芯(注意是單只而非電池組,對於電池組而言,實測的低溫性能可能會略高,這與散熱條件有關)而言,其0℃時的容量保持率約60~70%,-10℃時為40~55%,-20℃時為20~40%。這樣的低溫性能顯然不能滿足動力電源的使用要求。當前一些廠家通過改進電解液體系、改進正極配方、改進材料性能和改善電芯結構設計等使磷酸鐵鋰的低溫性能有所提升,但還未真正滿足需求。
( 4)、 電池存在一致性問題。單體磷酸鐵鋰電池壽命目前超過2000次,但電池組的壽命會大打折扣,有可能是500次。因為電池組是由大量單體電池串並而成,其工作狀態好比一群人用繩子綁在一起跑步,即使每個人都是短跑健將,如果大家的動作一致性不高,隊伍就跑不快,整體速度甚至比跑得最慢的單個選手的速度還要慢。電池組同理,只有在電池性能高度一致時,壽命發揮才能接近單體電池的水平。而在現有的條件下,由於種種原因,製作出來的電池一致性不佳,進而影響到電池的使用性能和整體壽命,因此應用在動力汽車上存在一定障礙。
Ⅶ 新能源汽車電池熱管理一般採用什麼方式
一般都是風冷式散熱。特斯拉是液冷式。冬天有個加熱功能。
Ⅷ 保時捷開發電動汽車熱管理系統 具備預測行程的功能
車家號的網友,大家好!今天選車網為您帶來保時捷電動車預測充電技術的最新消息,請點擊關注選車網,第一時間了解最新的汽車資訊。
選車君觀點:純電動汽車的充電效率對於電動汽車來說是十分關鍵的產品競爭力,高效地充電效率能夠有效地提升用戶在日常用車過程中的使用體驗,而保時捷即將推出的這款熱管理系統具有極強的智能性,或將為未來充電系統的發展提供全新的方向。
本文來源於汽車之家車家號作者,不代表汽車之家的觀點立場。
Ⅸ 汽車電子控制和新能源汽車熱管理哪個方
隨著現代道路交通系統和現代汽車技術的發展,人們對汽車的轉向操縱性能和行駛穩定性的要求日益提高。作為改善汽車操縱性能最有效的一種主動底盤控制技術--四輪轉向技術。於二十世紀80年代中期開始在汽車上得到應用,並伴隨著現代汽車工業的發展而不斷發展。汽車的四輪轉向(Four-wheel steering-4WS)是指汽車在轉向時。後輪可相對於車身主動轉向,使汽車的四個車輪都能起轉向作用。以改善汽車的轉向機動性、操縱穩定性和行駛安全性。
隨著對4WS這一領域研究的不斷進展,出現了多種不同結構形式、不同控制方案的實用4WS系統。按照控制和驅動後輪轉向機構的方式不同,4WS系統可分為機械式、液壓式、電控機械式、電控液壓式和電控電動式等幾種類型。本文介紹的是電控電動式4WS系統。
2.電控電動式4WS系統的發展概況
從20世紀初,日本政府頒發第1個關於四輪轉向的專利證書開始,對於汽車四輪轉向技術的研究一直伴隨著汽車工業的發展而進行著。1985年,日本的NISSAN在客車上應用了世界上第1例實用的4WS系統,開始了現代4WS系統的研究與開發。在技術相對成熟的4WS汽車中,大多數採用電控液壓式4WS系統,主要用於前輪採用液壓動力轉向的4WS汽車中,這種4WS系統具有工作壓力大、工作平穩可靠等優點。但由於液壓動力系統在結構、系統布置、密封性、能耗、效率等方面的不足,尤其是在轉向過程中存在著響應滯後的固有缺陷,使得電控液壓式4WS系統在適應現代4WS汽車的轉向靈敏性、准確性方面受到了束縛,不能滿足汽車高速行駛穩定性的要求。1988年3月,日本鈴木公司開發出電控電動式助力轉向系統(EPS),首次裝備在CERVO車上,有效地克服了液壓動力轉向系統的缺點。在EPS技術的基礎上,電控電動式4WS系統應運而生。1992年,在日本本田序曲的汽車上採用了電控電動式4WS系統。1993年,在日產全新的LAUREL車繫上也開始採用電控電動式的4WS系統。電控電動式4WS系統結構簡單、布置容易、控制效果好。
隨著電子技術的飛速發展,計算機技術在汽車中的廣泛應用,電控電動式4WS將是4WS汽車的發展趨勢。
3.電控四輪轉向系統的基本組成和工作原理網頁鏈接
Ⅹ 新能源汽車熱管理的目的是干什麼
熱管理的目的是為了讓汽車部件能夠在合適的工作范圍,尤其是動力電池的工作范圍,盡量是在20度左右的時候,它的性能是最佳的。