電動汽車半導體製冷
① 電製冷原理
原理
半導體製冷片的工作原理是:當一塊N型半導體材料和一塊P型半導體材料聯結成電偶對時,在這個電路中接通直流電流後,就能產生能量的轉移,電流由N型元件流向P型元件的接頭吸收熱量,成為冷端由P型元件流向N型元件的接頭釋放熱量,成為熱端。吸熱和放熱的大小是通過電流的大小以及半導體材料N、P的元件對數來決定。製冷片內部是由上百對電偶聯成的熱電堆,以達到增強製冷(制熱)的效果。
電子製冷又稱半導體製冷,或者溫差電製冷,是從50年代發展起來的一門介於製冷技術和半導體技術邊緣的學科,它利用特種半導體材料構成的P-N結,形成熱電偶對,產生珀爾帖效應,即通過直流電製冷的一種新型製冷方法,與壓縮式製冷和吸收式製冷並稱為世界三大製冷方式。
優點:
(1)無運動部件,因而工作時無雜訊,無磨損、壽命長,可靠性高。
(2)不使用製冷劑,故無泄漏,對環境無污染。
(3)半導體製冷器參數不受空間方向的影響,即不受重力場影響,在航天航空領域中有廣泛的應用。
(4)作用速度快,工作可靠,使用壽命長,易控制,調節方便,可通過調節工作電流大小來調節器製冷能力。也可通過切換電流的方向來改變其製冷或供暖的工作狀態。
(5)尺寸小,重量輕,適合小容量、小尺寸的特殊的製冷環境。
半導體製冷雖有許多優點,但也有一些缺點有待克服。
缺點:
(1)在大製冷量的情況下,半導體製冷器的製冷效率比機械壓縮式冷凍機低。因此,半導體製冷器只能用作小功率製冷器。
(2)電偶對中的電源只能使用直流電源,如果使用交流電源,就會產生焦耳熱,達不到吸熱降溫的目的
(3)電偶堆元件採用高純稀有材料,再加上工藝條件尚未十分成熟,導致元件成本比較高,目前還不能在普通製冷領域廣泛使用。
② 這個半導體怎麼實現製冷如題 謝謝了
我們知道,傳統的風冷散熱系統是不可能把顯示晶元的溫度降到環境溫度以下的,因為 當兩者的溫度幾乎相等的時候會很快達到熱平衡, 此時便根本無法繼續降溫, 頂多也只能接 近環境溫度。 而半導體製冷卻可以打破常規, 能夠強行將顯示晶元的溫度降到比環境溫度還 低。而它實現的原理,就是強行打破熱平衡,實現溫差效果。那麼,這種溫差效果又是如何 實現的呢? 首先我們需要明確一些基本概念。 1.帕爾貼效應:1834 年,法國科學家帕爾貼發現了熱電致冷和致熱現象,即金屬溫差 電逆效應。由兩種不同金屬組成一對熱電偶,當熱電偶輸入直流電流後,因直流電通入的方 向不同,將在電偶結點處產生吸熱和放熱現象,稱這種現象為帕爾貼效應。帕爾貼效應早在 20O 年之前發現,但是用到致冷還是近幾十年的事。 2.N 型半導體:任何物質都是由原子組成,原子是由原子核和電子組成。電子以高速度繞原 子核轉動,受到原子核吸引,因為受到一定的限制,所以電子只能在有限的軌道上運轉,不 能任意離開, 而各層軌道上的電子具有不同的能量(電子勢能)。 離原子核最遠軌道上的電子, 經常可以脫離原子核吸引,而在原子之間運動,叫導體。如果電子不能脫離軌道形成自由電 子,故不能參加導電,叫絕緣體。半導體導電能力介於導體與絕緣體之間,叫半導體。半導 體重要的特性是在一定數量的某種雜質滲入半導體之後, 不但能大大加大導電能力, 而且可 以根據摻入雜質的種類和數量製造出不同性質、 不同用途的半導體。 將一種雜質摻入半導體 後,會放出自由電子,這種半導體稱為 N 型半導體。 3.P 型半導體:是靠「空穴」來導電。在外電場作用下「空穴」流動方向和電子流動方向相反, 即「空穴」由正板流向負極,這是 P 型半導體原理。 4.載流子現象:N 型半導體中的自由電子,P 型半導體中的「空穴」,他們都是參與導電,統 稱為「載流子」,它是半導體所特有,是由於摻入雜質的結果。 5.半導體致冷材料:是對特殊半導體材料,通過摻入的雜質改變其溫差電動勢率、導電 率和熱導率,使其滿足致冷需要的材料。溫差電致冷組件就是由這種特殊的 N 型和 P 型半 導體製成的。 在明確了這些基本概念後,我們現在就來揭示溫差製冷的原理。 1.半導體致冷原理: 如圖把一隻 N 型半導體元件和一隻 P 型半導體元件聯結成熱電偶, 接上直流電源後,在接頭處就會產生溫差和熱量的轉移。在上面的一個接頭處,電流方向是 n→p,溫度下降並且吸熱,這就是冷端。而下面的一個接頭處,電流方向是 p→n,溫度上 升並且放熱,因此是熱端。 2.溫差電致冷組件致冷原理:如上圖把若干對半導體熱電偶在電路上串聯起來,而在傳 熱方面則是並聯的,這就構成了一個常見的致冷熱電堆。按圖示接上直流電源後,這個熱電 堆的上面是冷端,下面是熱端。藉助熱交換器等手段,使熱電堆的熱端不斷散熱並且保持一 定的溫度, 把熱電堆的冷端放到工作環境中去吸熱降溫, 這就是溫差電致冷組件的工作原理。 半導體散熱片側視圖 半導體製冷片的應用原理 1.半導體製冷的實際應用是如何進行的? 利用半導體製冷片的製冷原理,半導體製冷片的冷端與顯示晶元接觸,熱端則與散熱器 接觸。接通電源後,冷熱端出現溫差,熱量不斷地通過晶格能的傳遞,從冷端移送到熱端, 只要熱端的熱量能有效的散發掉, 則冷端就不斷的被冷卻, 使得製冷片的散熱效果出奇的好。 實踐證明,冷熱端的正常溫差大概在 45——60 度之間,其強度非常驚人。實際使用中,可 以把顯示晶元的溫度一舉降到零下 10 度。 2.半導體製冷為什麼還要配合使用散熱器? 我們看到, 在半導體製冷片的熱端, ZENO96 仍然配置了超大的散熱片和高效能的 EMI 磁懸浮散熱風扇。這是因為,只有半導體製冷片熱端的熱量被持續源源不斷的散發出去,才 能使冷端不斷冷卻而始終保持良好的製冷效果,顯示晶元才能保持在一個相對的恆溫狀態。 另外,半導體製冷片本身也有一定的正常工作溫度,一般來說其極限溫度大概在 100 度左 右,如果半導體製冷片沒有良好的散熱而超出了熱度承受極限,就會燒毀損壞。所以,半導 體製冷片的熱端一定要加裝散熱系統,保持良好的散熱效果。 關於磁浮風扇,這里有必要作一點說明。磁浮風扇(全稱為磁浮馬達風扇)的工作原理 是: 軸芯與軸承運作時無摩擦, 軸芯僅與空氣摩擦, 徹底解決小空間高積溫產品之散熱困擾。 藉由磁浮設計,馬達運轉時,轉子受磁軌道吸引,在軸芯與軸承內壁保持一定距離的懸空運 轉,不會接觸到軸承,故可避免傳統馬達之軸承被磨損成不規則橢圓而產生噪音的缺點,實 際運行中,此款風扇的噪音小於 26dB,非常安靜。同時,沒有磨損就不會有不穩定的運轉 及噪音,可使產品壽命大幅提升,捷波官方聲稱此款散熱系統的壽命可達 3 萬工作小時。 另外磁浮風扇還可以耐高溫,最高可耐 90℃高溫。 3.為什麼要配置外接電源介面? 與一般的風冷散熱相比,半導體製冷片的功率要大得多,一般可以達到 36W 到 40W, 也就是說,至少需要 12V 3A 的電源供應。所以,外接電源是必須的。而目前的主流 300W 電源,12V 電源組可以輸出 10A 左右電流,如果不是配置非常 BT 的電腦系統,一般分配 給半導體製冷片 12V 3A 的電源供電能力基本足夠。當然,如果是 5V 電壓標准,則可以提 供高達 20A 的電流輸出,分配給半導體製冷片綽綽有餘。 4.什麼是結露現象?如何預防? 結露現象是半導體製冷的致命殺手。 功率較大的半導體製冷片在濕度較高的環境下如果 冷端溫度過低,空氣中的水蒸氣就會在其表面凝結成為水滴,出現結露現象。如果水滴流到 主板或是顯示晶元,後果不堪設想。所以,這是最應該引起重視的問題。 從圖中我們看到, ZENO 96 採用設計嚴密的防冷凝絕緣絕熱墊來防止結露現象的發生。 半導體製冷片的周圍被兩層絕緣絕熱墊厚厚地嚴密封鎖起來, 可以最大程度的保障晶元的安 全。 實際使用中我們完全不必擔心結露問題的發生, 這一點捷波處理的非常出色, 也很周到。
③ 我想組裝電動三輪車用半導體製冷空調,哪裡賣零件
淘寶上,萬能的淘寶啥都有
④ 新能源汽車的空調製冷劑系統跟普通車一樣嗎
汽油車開啟空調後,百公里的油耗會增加1-2L,在怠速情況下開空調的油耗為1-2L/h;而電動汽車的是電池組分別對空調系統和動力系統供電,並不會增加電動機的負擔,無論以任何速度行駛,空調每小時的耗電量都是1.62kwh。同樣在靜止情況下開空調1小時,電動汽車比汽油車省5-10元左右。
空調,費電是不爭的事實。這里咱們得跟實際生活聯系起來,帶入到實際情境中更有意義:如果上下班來回總路程是50km,按照北京這路況,基本得開2個小時左右,這期間咱們使用空調的時間起碼1個小時,這就要求電動車主每天得為空調富餘出4%左右的電量,即10公里以上的續航里程,佔到了總路程的20%!這意味著原本滿電能開5-6天的電動車,使用空調的話就只能開4-5天了!我們還是建議電動車主合理使用空調,尤其是續航衰減明顯的冬天!
電動汽車空調耗電嗎:製冷系統
燃油汽車空調系統的暖風熱源主要由發動機冷卻液提供,而電動汽車的暖風系統與之不同。電動汽車空調系統暖風常見的方案如下:
①熱泵。由傳動帶驅動的直流無刷電動機的電動汽車熱泵式空調系統工作原理如圖所示。空調系統的製冷/制熱模式由四通換向閥轉換,實線箭頭表示製冷工況,虛線箭頭表示制熱工況。從原理上講,該系統與普通的熱泵空調並無區別,但是用於電動汽車上,其專門開發了雙工作腔滑片壓縮機、直流無刷電動機和逆變器控制系統。在熱泵工況下,系統從融霜模式轉為制熱模式時,風道內換熱器上的冷凝水將迅速蒸發,在風窗玻璃上結霜,影響駕駛的安全性。
②PTC電加熱器。PTC電加熱器是採用PTC熱敏電阻元件為發熱源的一種加熱器。PTC熱敏電阻通常是用半導體材料製成的,它的電阻隨濕度變化而急劇變化,當外界溫度降低,PTC電阻值隨之減小,發熱量反而會相應增加。按材質可以分為陶瓷PTC熱敏電阻和有機高分子PTC熱敏電阻。用於空調輔助電加熱器的是陶瓷PTC熱敏電阻。PTC熱敏電阻元件因具有隨環境溫度高低的變化,其電阻值隨之增加或減小的變化特性,所以PTC加熱器具有節能、恆溫、安全和使用壽命長等特點。
⑤ 汽車空調適合改成半導體製冷么
理論上可以。。。
但是目前半導體的製冷效率還是很低的,根本滿足不了車內的降溫需求。。
也許,以後有了高性能的製冷半導體,汽車壓縮機就可以淘汰了。。
半導體製冷的優點顯而易見。。。
⑥ 車載冰箱是半導體製冷一般可以達到多少度夏天用來在家存放肉(大概10小時)行不行
車載冰箱就是指可以在汽車上攜帶的冷藏櫃
車載冰箱是家用冰箱的延續,可以採用半導體電子製冷技術,也可以通過壓縮機製冷。一般噪音小污染少。在行車中只需將電源插頭插入點煙孔,即可給冰箱降溫。
市場上主要有兩種車載冰箱,一種是 半導體車載冰箱,這種冰箱的優點是既能製冷又能制熱,環保、無污染,體積小,成本較低,工作時沒有震動、噪音、壽命長。缺點是製冷效率不高,製冷溫度受環境溫度影響,製冷無法達到零度以下,且容量較小。另一種是壓縮機車載冰箱,壓縮機是傳統冰箱的傳統技術,製冷溫度低,為-18度10度。製冷效率高,能製冰、保鮮,體積大,是未來車載冰箱發展的主流方向。但是這種冰箱重量較重,攜帶不方便,價格較高
⑦ 車載半導體空調製作詳細方法最好配圖
可以吹冷風的,就是不知道屋子能不能製冷,材料25408製冷片10片12v48a電源兩台水冷頭20個溫控器1個,大冷凝器1個小冷凝器1個自吸泵2個,硅管2米保溫皮2米。
⑧ 誰用過半導體製冷片4個製冷片做汽車空調,效果怎樣
比原車的鋁的要好!能改好嗎?原車的很小的