電動汽車電池管理系統溫度檢測
『壹』 電動汽車電池管理系統適合什麼單片機
基於單片機的動力電池管理系統的硬體設計時間:2010-05-04 11:10:19 來源:電子技術應用 作者:李練兵 梁 浩 劉炳山 電動汽車是指全部或部分由電機驅動的汽車。目前主要有純電動汽車、混合電動車和燃料電池汽車3種類型。電動汽車目前常用的動力來自於鉛酸電池、鋰電池、鎳氫電池等。 鋰電池具有高電池單體電壓、高比能量和高能量密度,是當前比能量最高的電池。但正是因為鋰電池的能量密度比較高,當發生誤用或濫用時,將會引起安全事故。而電池管理系統能夠解決這一問題。當電池處在充電過壓或者是放電欠壓的情況下,管理系統能夠自動切斷充放電迴路,其電量均衡的功能能夠保證單節電池的壓差維持在一個很小的范圍內。此外,還具有過溫、過流、剩餘電量估測等功能。本文所設計的就是一種基於單片機的電池管理系統[1]。 1 電池管理系統硬體構成 針對系統的硬體電路,可分為MCU模塊、檢測模塊、均衡模塊。 1.1 MCU模塊 MCU是系統控制的核心。本文採用的MCU是M68HC08系列的GZ16型號的單片機。該系列所有的MCU均採用增強型M68HC08中央處理器(CP08)。該單片機具有以下特性: (1)8 MHz內部匯流排頻率;(2)16 KB的內置Flash存儲器;(3)2個16位定時器介面模塊;(4)支持1 MHz~8 MHz晶振的時鍾發生器;(5)增強型串列通信介面(ESCI)模塊。 1.2 檢測模塊 檢測模塊中將對電壓檢測、電流檢測和溫度檢測模塊分別進行介紹。 1.2.1 電壓檢測模塊 本系統中,單片機將對電池組的整體電壓和單節電壓進行檢測。對於電池組整體電壓的檢測有2種方法:(1)採用專用的電壓檢測模塊,如霍爾電壓感測器;(2)採用精密電阻構建電阻分壓電路。採用專用的電壓檢測模塊成本較高,而且還需要特定的電源,過程比較復雜。所以採用分壓的電路進行檢測。10串錳酸鋰電池組電壓變化的范圍是28 V~42 V。採用3.9 M?贅和300 k?贅的電阻進行分壓,採集出來的電壓信號的變化范圍是2 V~3 V,所對應的AD轉換結果為409和614。 對於單體電池的檢測,主要採用飛電容技術。飛電容技術的原理圖如圖1所示[2],為電池組後4節的保護電路圖,通過四通道的開關陣列可以將後4節電池的任意1節電池的電壓採集到單片機中,單片機輸出驅動信號,控制MOS管的導通和關斷,從而對電池組的充電放電起到保護作用。 如圖1所示,為電池組後4節的保護電路圖,通過四通道的開關陣列可以將後4節電池的任意1節電池的電壓採集到單片機中,單片機輸出驅動信號,控制MOS管的導通和關斷,從而對電池組的充電放電起到保護作用。 以上6節電池可以用2個三通道開關切換陣列來實現。MAX309為1片4選1、雙通道的多路開關,通過選址實現通道的選擇。開關S5、S6、S7負責將電池的正極連接至飛電容的正極。開關S2、S3、S4負責將電池負極連接至飛電容的負極。三通道開關切換陣列結構與四通道開關切換陣列類似,只是通道數少1路。工作時,單片機發出通道選址信號,讓其中1路電池的正負極與電容連接,對電容進行充電,然後斷開通道開關,接通跟隨放大器的開關,單片機對電容的電壓進行快速檢測,由此完成了對1節電池的電壓檢測。若發現檢測電壓小於2.8 V,則可推斷出電池可能發生短路、過放或保護系統到電池的檢測線斷路,單片機將馬上發出信號切斷主迴路MOS管。重復上述過程,單片機即完成對本模塊所管理的電池的檢測。 1.2.2 電流采樣電路 電流采樣時,電池管理系統中的參數是電池過流保護的重要依據。本系統中電流采樣電路如圖2所示。當電池放電時,用康銅絲對電流信號進行檢測,將檢測到的電壓信號經過差模放大器的放大,變為0~5 V的電壓信號送至單片機。如果放電的電流過大,單片機檢測到的電壓信號比較大,就會驅動三極體動作,改變MOS管柵極電壓,關斷放電的迴路。比如,對於36 V的錳酸鋰電池來說,設定其保護電流是60 A。康銅絲的電阻是5 mΩ左右。當電流達到60 A時,康銅絲的電壓達300 mV左右。為提高精度,將電壓通過放大器放大10倍送至單片機檢測。 1.2.3 溫度檢測 電池組在充、放電過程中,一部分能量以熱量形式被釋放出來, 這部分熱量不及時排除會引起電池組過熱。如果單個鎳氫電池溫度超過55℃,電池特性就會變質,電池組充、放電平衡就會被打破,繼而導致電池組永久性損壞或爆炸。為防止以上情況發生,需要對電池組溫度進行實時監測並進行散熱處理。 採用熱敏電阻作為溫度感測器進行溫度采樣。熱敏電阻是一種熱敏性半導體電阻器,其電阻值隨著溫度的升高而下降。電阻溫度特性可以近似地用下式來表示: 1.3 均衡模塊 電池組常用的均衡方法有分流法、飛速電容均衡充電法、電感能量傳遞方法等。在本系統中,需要較多的I/O口驅動開關管,而單片機的I/O口有限,所以採取整充轉單充的充電均衡方法。原理圖如圖3所示。Q4是控制電池組整充的開關,Q2、Q3、Q5是控制單節電池充電的開關。以10節錳酸鋰電池組為例,變壓器主線圈兩端電壓為42 V,副線圈電壓為電池的額定電壓4.2 V。剛開始Q4導通,Q2、Q3、Q5截止,單節電池的電壓不斷升高,當檢測到某一節電池的電壓達到額定電壓4.2 V以後,電壓檢測晶元發出驅動信號,關閉Q4,打開Q2、Q3、Q5,整個系統進入單充階段,未充滿的電池繼續充電,以達到額定電壓的電池保持額定電壓不變。經測試,電壓差值不會超過50 mV。 2 SOC電量檢測 在鋰離子電池管理系統中,常用的SOC計算方法有開路電壓法、庫倫計演算法、阻抗測量法、綜合查表法[3]。 (1)開路電壓法是最簡單的測量方法,主要根據電池開路電壓的大小判斷SOC的大小。由電池的工作特性可知,電池的開路電壓與電池的剩餘容量存在著一定的對應關系。 (2)庫侖計演算法是通過測量電池的充電和放電電流,將電流值與時間值的乘積進行積分後計算得到電池充進的電量和放出的電量,並以此來估計SOC的值。 (3)阻抗測量法是利用電池的內阻和荷電狀態SOC之間一定的線性關系,通過測出電池的電壓、電流參數計算出電池的內阻,從而得到SOC的估計值。 (4)綜合查表法中電池的剩餘容量SOC與電池的電壓、電流、溫度等參數是密切相關的。通過設置一個相關表,輸入電壓、電流、溫度等參數就可以查詢得到電池的剩餘容量值。 在本設計中,從電路的集成度、成本、所選MCU的性能方面考慮,採用了軟體編程的方法。綜合幾種方法,採用庫倫計演算法比較合適。 (1)用C表示鋰電池組從42 V降到32 V時放出的總的電量。 (2)用η表示電流i經過時間t後,放出的電量與C的比值。 其中CRM為剩餘電量。令ΔCi=i×Δt,表示?駐t時間內電池組以i放電的放電量;或者是以i充電的充電量,剩餘電量實際上是對ΔCi的計算以及累加。設定合適的采樣時間Δt,測定當前的電流值,然後計算乘積,得到Δt時間內剩餘容量CRM的變化量,從而不斷更新CRM的值,即可實現SOC電量的檢測。 3 試驗結果 通過電池管理系統對錳酸鋰電池組進行充放電測試。圖4(a)為鋰電池組放電測試圖,放電電流為8 A,當電池組電壓降至32 V時,放電MOS管關斷。圖4(b)為充電的測試圖。充電結束4小時後,均衡完成。 本文的電池管理系統以M68HC08GZ16為核心,實現了對電池組單體電壓、電流、溫度信號的採集。充電電量平衡以後,單體電池的電壓差值不超過50 mV。整體系統運行性能良好,能夠滿足電動車動力電池組應用需要。
『貳』 典型的汽車電池管理系統應具有哪些功能,並給出每種功能的合理解釋
(1)數據採集 電池管理系統的所有演算法均以採集的動力電池數據作為輸入,采樣速率、精度和前置濾波特性是影響電池系統性能的重要指標。電動汽車電池管理系統的采樣速率一般要求大於20Hz(50ms);
(2)電池狀態計算 電池狀態計算主要包括SOC和電池組健康狀態(SOH)兩方面。SOC用來提示動力電池組剩餘電量,是計算和估計動力汽車續航里程的基礎。SOC是防止動力電池過充電和過放電的主要依據,只有準確估算電池組的SOC才能有效提高動力電池組的利用效率,保證動力電池組的使用壽命。在電動汽車中,准確估算蓄電池SOC,可以保護蓄電池,提高整車性能,降低對動力電池的要求以及提高經濟性等;
(3)能量管理 主要包括兩個部分:以電流、電壓、溫度、SOC和SOH為輸入進行充電過程式控制制;以SOC、SOH和溫度等參數為條件進行放電功率控制;
(4)安全管理 主要用於監視電池電壓、電流、溫度等是否超過正常范圍,防止電池組過充電、過放電。目前,在對電池組進行整組監控的同時,多數電池管理系統已經發展到對極端單體電池進行過充電、過放電、溫度過高等安全狀態管理。安全管理系統主要有以下功能:煙霧報警、絕緣檢測、自動滅火、過電壓和過電流控制、過放電控制、防止溫度過高及在發生碰撞情況下的電池組裂解等;
(5)熱管理 主要用於電池工作溫度高於適宜工作溫度上限時對電池進行冷卻,低於適宜工作溫度下限時對電池進行加熱,使電池處於適宜的工作溫度范圍內,並在電池工作過程中保持電池單體間溫度的均衡。對於大功率放電和高溫條件下使用的電池,電池的熱管理尤為重要。熱管理主要有以下功能:電池溫度的准確測量和監控、電池組溫度過高時的有效散熱和通風、低溫條件下的快速加熱、有害氣體產生時的有效通風及保證電池組溫度場的均勻分布。
『叄』 電動汽車的電池管理系統(BMS)是如何工作的如何能監測電池管理系統的性能是否可靠
這些測試需要用到的測量儀器:
高精度多通道的記錄儀(例如MX100)長時間監測記錄電壓、電流和溫度等參數;
16通道並且通道間相互隔離的示波記錄儀(例如:DL850E) 採集快速信號,並用不同模塊記錄更多類型的參數;
高精度的功率分析儀(例如WT3000E)對充電效率、電池電量等進行准確測量;
數字示波器(例如:DLM2000)的CAN匯流排分析功能可以對電池管理系統中的CAN數據進行實時解碼,捕獲錯誤幀;
錄波儀(例如:DL850EV)通過CAN匯流排監測模塊,對電池管理系統的CAN匯流排中傳輸的各種感測器信號進行監測。
『肆』 新能源汽車有哪些溫度感測器
感測器作為電動汽車電子控制系統的信息源,是電動汽車電子控制系統的關鍵部件,也是電動汽車電子技術領域研究的核心內容之一。
電動汽車感測器與傳統汽車感測器一樣,都是由敏感元件、轉換元件和其他輔助元件組成,優勢也將信號調節與轉換電路及輔助電源作為感測器的組成部分。
電動汽車的能量源由電池提供。隨著電動汽車的結構的變化,其內部所用的感測器也有所不同,感測器類型也相應發生變化。車內大部分的傳統和機械鋼性信號被柔性的電信號所取代,增加了電源系統中一些電壓計電流感測器。為了更好地控制電動機的出入電壓計電流,感測器的檢測精度也比以往有所提高。電動汽車中同時保留了傳統汽車中輔助子系統中作用電子控制感測單元(ECU),同時對安全管理系統和車身舒適系統感測器提出更高要求,體現了汽車感測器的最先進技術。
『伍』 純電動汽車的電池管理
純電動汽車電池管理系統作為電池系統的重要組成部分,具有實時監控電池狀態、優化使用電池能量、延長電池壽命和保證電池的使用安全等重要作用。電池管理系統對整車的安全運行、整車控制策略的選擇、充電模式的選擇以及運營成本都有很大影響。電池管理系統無論在車輛運行過程中還是在充電過程中都要可靠地完成電池狀態的實時監控和故障診斷,並通過匯流排的方式告知車輛集成控制器或充電機,以便採用更加合理的控制策略,達到有效且高效使用電池的目的。
電池管理系統採用集散式系統結構,每套電池管理系統由1台中央控制模塊(或稱主機)和10個電池測控模塊(或稱從機)組成。電池管理系統檢測模塊安裝在電池箱前面板內;電池管理系統主控模塊安裝在車輛尾部高壓設備倉內,
電池管理系統的功能如下:
1.電體電池電壓的檢測
2.電池溫度的檢測
3.電池組工作電流的檢測
4.絕緣電阻檢測
5.冷卻風機控制
6.充放電次數記錄
7.電池組SoC的估測
8.電池故障分析與在線報警
9. 各箱電池充放電次數記錄
10.各箱電池離散性評價
11.與車載設備通信,為整車控制提供必要的電池數據CAN1
12.與車載監控設備通信,將電池信息送面板顯示CAN2
13.與充電機通信,安全實現電池的充電RS—485
14.有簡易的設備實現純電動汽車電池管理系統的初始化功能,能滿足電池快速更換以及電池箱重新編組的需要。
『陸』 電池管理系統監測電壓,電流,溫度各有什麼意義
你好,
接線方式
電流互感器的接線方式按其所接負載的運行要求確定。最常用的接線方式為單相、三相星形和不完全星形三種,分別如圖4a、圖4b和圖4c。
查看圖片[電流互感器接線方式]額定變比和誤差:電流互感器的額定變比KN指電流互感器的額定電流比。即:KN=I1N/I2N
電流互感器原邊電流在一定范圍內變動時,一般規定為10~120%I1N,副邊電流應按比例變化,而且原、副邊
『柒』 純電動汽車電池管理系統b ms的定義
BMS的首要任務保證電池安全可靠的使用,BMS蓄電池管理系統的定義:監控與動力電池自身安全運行相關的狀態參數(電池電壓、電流和溫度等)。可以為蓄電池提供通訊、安全、電芯均衡管理控制,並提供與應用設備通信介面
BMS的基本功能:1.電池狀態監測(電池的電流、電壓、溫度監測),2.電池狀態分析(電池SOC、SOH評估 ),
3.電池安全保護 (過電流保護,過充電、過放電保護,過溫度保護) 4.能力控制管理 (電池充電、放電、均衡管理),5.電池信息管理(電池信息顯示、系統內外信息交互、電池歷史信息存儲 )
『捌』 純電動汽車電池管理系統故障三級是什麼意思
主要功能包括:電池物理參數實時監測;電池狀態估計;在線診斷與預警;充、放電與預充控制;均衡管理和熱管理等。
一般而言電動汽車電池管理系統要實現以下幾個功能:
准確估測動力電池組的荷電狀態:
准確估測動力電池組的荷電狀態 (State of Charge,即SOC),即電池剩餘電量,保證SOC維持在合理的范圍內,防止由於過充電或過放電對電池的損傷,從而隨時預報混合動力汽車儲能電池還剩餘多少能量或者儲能電池的荷電狀態。
動態監測動力電池組的工作狀態:
在電池充放電過程中,實時採集電動汽車蓄(應該為動力電池組)電池組中的每塊電池的端電壓和溫度、充放電電流及電池包總電壓,防止電池發生過充電或過放電現象。同時能夠及時給出電池狀況,挑選出有問題的電池,保持整組電池運行的可靠性和高效性,使剩餘電量估計模型的實現成為可能。除此以外,還要建立每塊電池的使用歷史檔案,為進一步優化和開發新型電、充電器、電動機等提供資料,為離線分析系統故障提供依據。
單體電池間的均衡:
即為單體電池均衡充電,使電池組中各個電池都達到均衡一致的狀態。均衡技術是目前世界正在致力研究與開發的一項電池能量管理系統的關鍵技術。
『玖』 請教各位高手,BMS中需要對每個電池都進行溫度檢測嗎
在電池充放電過程中,實時採集電動汽車蓄電池組中的每塊電池的端電壓和溫度、充放電電流及電池包總電壓,防止電池發生過充電或過放電現象。同時能夠及時給出電池狀況,挑選出有問題的電池,保持整組電池運行的可靠性和高效性,使剩餘電量估計模型的實現成為可能。除此以外,還要建立每塊電池的使用歷史檔案,為進一步優化和開發新型電、充電器、電動機等提供資料,為離線分析系統故障提供依據