電動汽車的智能化技術難點
Ⅰ 純電動轎車的核心技術
發展電動汽車必須解決好4個方面的關鍵技術:電池技術、電機驅動及其控制技術、電動汽車整車技術以及能量管理技術。
電池技術電池是電動汽車的動力源泉,也是一直制約電動汽車發展的關鍵因素。電動汽車用電池的主要性能指標是比能量(E)、能量密度(Ed)、比功率(P)、循環壽命(L)和成本(C)等。要使電動汽車能與燃油汽車相競爭,關鍵就是要開發出比能量高、比功率大、使用壽命長的高效電池。
到目前為止,電動汽車用電池經過了3代的發展,已取得了突破性的進展。第1代是鉛酸電池,目前主要是閥控鉛酸電池(VRLA),由於其比能量較高、價格低和能高倍率放電,因此是目前惟一能大批量生產的電動汽車用電池。第2代是鹼性電池,主要有鎳鎘(NJ-Cd)、鎳氫(Ni-MH)、鈉硫(Na/S)、鋰離子(Li-ion)和鋅空氣(Zn/Air)等多種電池,其比能量和比功率都比鉛酸電池高,因此大大提高了電動汽車的動力性能和續駛里程,但其價格卻比鉛酸電池高。第3代是以燃料電池為主的電池。燃料電池直接將燃料的化學能轉變為電能,能量轉變效率高,比能量和比功率都高,並且可以控制反應過程,能量轉化過程可以連續進行,因此是理想的汽車用電池,但目前還處於研製階段,一些關鍵技術還有待突破問。
電力驅動及其控制技術電動機與驅動系統是電動汽車的關鍵部件,要使電動汽車有良好的使用性能,驅動電機應具有調速范圍寬、轉速高、啟動轉矩大、體積小、質量小、效率高且有動態制動強和能量回饋等特性。目前,電動汽車用電動機主要有直流電動機(DCM)、感應電動機(IM)、永磁無刷電動機(PMBLM)和開關磁阻電動機(SRM)4類。
近幾年來,由感應電動機驅動的電動汽車幾乎都採用矢量控制和直接轉矩控制。由於直接轉矩的控制手段直接、結構簡單、控制性能優良和動態響應迅速,因此非常適合電動汽車的控制。美國以及歐洲研製的電動汽車多採用這種電動機。永磁無刷電動機可以分為由方波驅動的無刷直流電動機系統(BLDCM)和由正弦波驅動的無刷直流電動機系統(PMSM),它們都具有較高的功率密度,其控制方式與感應電動機基本相同,因此在電動汽車上得到了廣泛的應用。PMSM類電機具有較高的能量密度和效率,其體積小、慣性低、響應快,非常適應於電動汽車的驅動系統,有極好的應用前景。目前,由日本研製的電動汽車主要採用這種電動機。
開關磁阻電動機(SRM)具有簡單可靠、可在較寬轉速和轉矩范圍內高效運行、控制靈活、可四象限運行、響應速度快和成本較低等優點。實際應用發現SRM存在轉矩波動大、雜訊大、需要位置檢測器等缺點,應用受到了限制。
隨著電動機及驅動系統的發展,控制系統趨於智能化和數字化。變結構控制、模糊控制、神經網路、自適應控制、專家控制、遺傳演算法等非線性智能控制技術,都將各自或結合應用於電動汽車的電動機控制系統。
電動汽車整車技術電動汽車是高科技綜合性產品,除電池、電動機外,車體本身也包含很多高新技術,有些節能措施比提高電池儲能能力還易於實現。採用輕質材料如鎂、鋁、優質鋼材及復合材料,優化結構,可使汽車自身質量減輕30%-50%;實現制動、下坡和怠速時的能量回收;採用高彈滯材料製成的高氣壓子午線輪胎,可使汽車的滾動阻力減少50%;汽車車身特別是汽車底部更加流線型化,可使汽車的空氣阻力減少50%。
能量管理技術蓄電池是電動汽車的儲能動力源。電動汽車要獲得非常好的動力特性,必須具有比能量高、使用壽命長、比功率大的蓄電池作為動力源。而要使電動汽車具有良好的工作性能,就必須對蓄電池進行系統管理。
能量管理系統是電動汽車的智能核心。一輛設計優良的電動汽車,除了有良好的機械性能、電驅動性能、選擇適當的能量源(即電池)外,還應該有一套協調各個功能部分工作的能量管理系統,它的作用是檢測單個電池或電池組的荷電狀態,並根據各種感測信息,包括力、加減速命令、行駛路況、蓄電池工況、環境溫度等,合理地調配和使用有限的車載能量;它還能夠根據電池組的使用情況和充放電歷史選擇最佳充電方式,以盡可能延長電池的壽命。
世界各大汽車製造商的研究機構都在進行電動汽車車載電池能量管理系統的研究與開發。電動汽車電池當前存有多少電能,還能行駛多少公里,是電動汽車行駛中必須知道的重要參數,也是電動汽車能量管理系統應該完成的重要功能。應用電動汽車車載能量管理系統,可以更加准確地設計電動汽車的電能儲存系統,確定一個最佳的能量存儲及管理結構,並且可以提高電動汽車本身的性能。
在電動汽車上實現能量管理的難點,在於如何根據所採集的每塊電池的電壓、溫度和充放電電流的歷史數據,來建立一個確定每塊電池還剩餘多少能量的較精確的數學模型。
Ⅱ 新能源汽車能否實現智能化
新能源汽車能否實現智能化?
這個問題在現在來說基本上都不算問題了,
因為新能源汽車能否智能化要看電池怎麼樣,
現在就算是油車智能化程度都比較高了,
各種株洲潤錦駕駛輔助技術真是應有盡有,所以新能源的就不用多說了,
新能源的汽車問題不在於能不能智能化,而是在於能不能增加續航里程!
Ⅲ 構建智能電網的關鍵技術難題是什麼
1、大規模接入間歇式能源並網技術;2與電動汽車充電設3、施協調運行電網技術;4、大規模儲能系統;5、高密度多點分布式供能系統;6、智能配用電系統;7用戶與電網的互動技術;8、智能電網信息及通信技術。
Ⅳ 汽車智能化技術有哪些
汽車智能化技術主要包含計算機、現代感測、信息融合、通訊、人工智慧及自動控制等技術。
1、智能汽車首先有一套導航信息資料庫,存有全國高速公路、普通公路、城市道路以及各種服務設施(餐飲、旅館、加油站、景點、停車場)的信息資料;
2、GPS定位系統,利用這個系統精確定位車輛所在的位置,與道路資料庫中的數據相比較,確定以後的行駛方向;
3、道路狀況信息系統,由交通管理中心提供實時的前方道路狀況信息,如堵車、事故等,必要時及時改變行駛路線;
4、車輛防碰系統,包括探測雷達、信息處理系統、駕駛控制系統 ,控制與其他車輛的距離,在探測到障礙物時及時減速或剎車,並把信息傳給指揮中心和其他車輛;
5、緊急報警系統,如果出了事故,自動報告指揮中心進行救援;
6、無線通信系統,用於汽車與指揮中心的聯絡;
7、自動駕駛系統,用於控制汽車的點火、改變速度和轉向等。
Ⅳ 新能源汽車的智能化能全面實施嗎
新能源智能化要全面實施可能還需要一定的時間。
Ⅵ 純電動車的核心技術
發展電動汽車必須解決好4個方面的關鍵技術:電池技術、電機驅動及其控制技術、電動汽車整車技術以及能量管理技術。
電池技術電池是電動汽車的動力源泉,也是一直制約電動汽車發展的關鍵因素。電動汽車用電池的主要性能指標是比能量(E)、能量密度(Ed)、比功率(P)、循環壽命(L)和成本(C)等。要使電動汽車能與燃油汽車相競爭,關鍵就是要開發出比能量高、比功率大、使用壽命長的高效電池。
電動汽車用電池經過了3代的發展,已取得了突破性的進展。第1代是鉛酸電池,主要是閥控鉛酸電池(VRLA),由於其比能量較高、價格低和能高倍率放電,因此是惟一能大批量生產的電動汽車用電池。第2代是鹼性電池,主要有鎳鎘(NJ-Cd)、鎳氫(Ni-MH)、鈉硫(Na/S)、鋰離子(Li-ion)和鋅空氣(Zn/Air)等多種電池,其比能量和比功率都比鉛酸電池高,因此大大提高了電動汽車的動力性能和續駛里程,但其價格卻比鉛酸電池高。第3代是以燃料電池為主的電池。燃料電池直接將燃料的化學能轉變為電能,能量轉變效率高,比能量和比功率都高,並且可以控制反應過程,能量轉化過程可以連續進行,因此是理想的汽車用電池,但還處於研製階段,一些關鍵技術還有待突破問。
電力驅動及其控制技術電動機與驅動系統是電動汽車的關鍵部件,要使電動汽車有良好的使用性能,驅動電機應具有調速范圍寬、轉速高、啟動轉矩大、體積小、質量小、效率高且有動態制動強和能量回饋等特性。電動汽車用電動機主要有直流電動機(DCM)、感應電動機(IM)、永磁無刷電動機(PMBLM)和開關磁阻電動機(SRM)4類。
由感應電動機驅動的電動汽車幾乎都採用矢量控制和直接轉矩控制。由於直接轉矩的控制手段直接、結構簡單、控制性能優良和動態響應迅速,因此非常適合電動汽車的控制。美國以及歐洲研製的電動汽車多採用這種電動機。永磁無刷電動機可以分為由方波驅動的無刷直流電動機系統(BLDCM)和由正弦波驅動的無刷直流電動機系統(PMSM),它們都具有較高的功率密度,其控制方式與感應電動機基本相同,因此在電動汽車上得到了廣泛的應用。PMSM類電機具有較高的能量密度和效率,其體積小、慣性低、響應快,非常適應於電動汽車的驅動系統,有極好的應用前景。由日本研製的電動汽車主要採用這種電動機。
開關磁阻電動機(SRM)具有簡單可靠、可在較寬轉速和轉矩范圍內高效運行、控制靈活、可四象限運行、響應速度快和成本較低等優點。實際應用發現SRM存在轉矩波動大、雜訊大、需要位置檢測器等缺點,應用受到了限制。
隨著電動機及驅動系統的發展,控制系統趨於智能化和數字化。變結構控制、模糊控制、神經網路、自適應控制、專家控制、遺傳演算法等非線性智能控制技術,都將各自或結合應用於電動汽車的電動機控制系統。
電動汽車整車技術電動汽車是高科技綜合性產品,除電池、電動機外,車體本身也包含很多高新技術,有些節能措施比提高電池儲能能力還易於實現。採用輕質材料如鎂、鋁、優質鋼材及復合材料,優化結構,可使汽車自身質量減輕30%-50%;實現制動、下坡和怠速時的能量回收;採用高彈滯材料製成的高氣壓子午線輪胎,可使汽車的滾動阻力減少50%;汽車車身特別是汽車底部更加流線型化,可使汽車的空氣阻力減少50%。
能量管理技術蓄電池是電動汽車的儲能動力源。電動汽車要獲得非常好的動力特性,必須具有比能量高、使用壽命長、比功率大的蓄電池作為動力源。而要使電動汽車具有良好的工作性能,就必須對蓄電池進行系統管理。
能量管理系統是電動汽車的智能核心。一輛設計優良的電動汽車,除了有良好的機械性能、電驅動性能、選擇適當的能量源(即電池)外,還應該有一套協調各個功能部分工作的能量管理系統,它的作用是檢測單個電池或電池組的荷電狀態,並根據各種感測信息,包括力、加減速命令、行駛路況、蓄電池工況、環境溫度等,合理地調配和使用有限的車載能量;它還能夠根據電池組的使用情況和充放電歷史選擇最佳充電方式,以盡可能延長電池的壽命。
世界各大汽車製造商的研究機構都在進行電動汽車車載電池能量管理系統的研究與開發。電動汽車電池當前存有多少電能,還能行駛多少公里,是電動汽車行駛中必須知道的重要參數,也是電動汽車能量管理系統應該完成的重要功能。應用電動汽車車載能量管理系統,可以更加准確地設計電動汽車的電能儲存系統,確定一個最佳的能量存儲及管理結構,並且可以提高電動汽車本身的性能。
在電動汽車上實現能量管理的難點,在於如何根據所採集的每塊電池的電壓、溫度和充放電電流的歷史數據,來建立一個確定每塊電池還剩餘多少能量的較精確的數學模型。
Ⅶ 新能源汽車與智能汽車各有何優缺點
一、新能源汽車:
1、優點:採用混合動力後可按平均需用的功率來確定內燃機的最大功率,發動機相對較小(downsize),此時處於油耗低、污染少的最優工況下工作。由於內燃機可持續工作,電池又可以不斷得到充電,故其行程和普通汽車一樣。
如果是純電動汽車,那技術相對簡單成熟,只要有電力供應的地方都能夠充電。
2、缺點:系統結構相對復雜;長距離高速行駛省油效果不明顯。
蓄電池單位重量儲存的能量太少,還因電動車的電池較貴,又沒形成經濟規模,故購買價格較貴;至於使用成本,有些試用結果比汽車貴,有些結果僅為汽車的1/7~1/3,這主要取決於電池的壽命及當地的油、電價格。
二、智能汽車:
1、優點:在復雜多變的情況下,它的「大腦」能隨機應變,自動選擇最佳方案,指揮汽車正常、順利地行駛。
智能汽車不需要人去駕駛,人只舒服地坐在車上享受。
2、缺點:技術難度大,最終的實用性測試和驗證還需要很長時間。
(7)電動汽車的智能化技術難點擴展閱讀:
智能汽車的基本結構:
從具體和現實的方面來看,智能汽車較為成熟的和可預期的功能和系統主要是包括智能駕駛系統、生活服務系統、安全防護系統、位置服務系統以及用車服務系統等,各個參與企業也主要是圍繞上述這些功能系統進行發展的。
這其中,各個系統實際上又包括一些細分的系統和功能,比如智能駕駛系統就是一個大的概念,也是一個最復雜的系統,它包括了:智能感測系統、智能計算機系統、輔助駕駛系統、智能公交系統等;生活服務系統包括了影音娛樂,信息查詢以及各類生物服務等功能;而像位置服務系統,除了要能提供准確的車輛定位功能外,還要讓汽車能與另外的汽車實現自動位置互通,從而實現約定目標的行駛目的。
智能汽車有了這些系統的共同作用,相當於給汽車裝上了「眼睛」、「大腦」和「腳」的電視攝像機、電子計算機和自動操縱系統之類的裝置。
Ⅷ 電動新能源的汽車有哪些需要解決的問題呢
新能源汽車並不是我們想像的那麼完善,現在的新能源汽車主要是以電能為驅動的,但是電的新能源汽車它本身有幾個關鍵的問題,一個是智能化的安全性問題,一個是續航的問題,再有一個就是基礎設施的附件問題。
最後一個就是基礎設施的鋪墊問題,電動汽車你用充電的吧,你就是用家裡的交流電就充電,充電效率很低的,但是你想用充電樁,它不是所有的小區都有充電樁,有些老舊小區它就是沒有充電樁,而且你家要是住3樓5樓,你總不能剩下來一根好長好長的插排,然後給自己車充電吧,那充一晚上是充滿了,但它有安全隱患呢,所以無論是老舊小區還是公共場所還是高速公路,都應該有更多的相關基礎設施。
Ⅸ 新能源汽車的技術難點有哪些
新能源汽車技術難點淺析及解決方案
1. 概述
隨著混合動力以及純電動汽車的不斷發展,汽車電機控制策略的復雜性和可靠性日益提升。整車廠以及供應商對新能源控制器的開發環境的需求也在日益增加。
新能源汽車控制的整體解決方案,可讓工程師在實驗室環境下,完成對整車控制器(HCU)、電池管理單元(BMS)、電機控制器(MCU)、功能的驗證。還可以模擬實車測試中遇到的所有工況范圍,在實車試驗之前即可對ECU功能進行全面測試。
本文將提供針對新能源車輛的HCU、MCU以及BMS三個控制器測試的解決方案。 2. 技術難點
針對BMS的工作電壓測試、單體電池電壓、溫度測試、SOC計算功能測試、充放電控制測試、電池熱平衡測試、高壓安全功能測試、通訊測試、故障診斷測試等等一系列測試,OEM面臨著諸多挑戰。
採用真實的電池組測試BMS有著諸多的弊端:
1) 極限工況模擬給測試人員帶來安全隱患,例如過壓、過流和過溫,有可
能導致電池爆炸。
2) SOC估計演算法驗證耗時長,真實的電池組充放電試驗耗時一周甚至更長
的時間。
3) 模擬特定工況難度大,例如均衡功能測試時,製造電池單體間細微SOC
差別,電池熱平衡測試時,製造單體和電池包間細微的溫度差別等。 4) 以及其他針對BMS功能測試,如電池組工作電壓、單體電池電壓、溫度、
SOC計算功能、充放電控制、電池熱平衡、高壓安全功能、均衡功能、通訊、故障診斷、感測器等一系列的測試,OEM都面臨著諸多挑戰。 MCU在研發過程中涉及被控對象的模擬。而電機本體的工作原理主要基於電磁感應原理,其各物理量(如磁通量、感應電動勢、電磁力等)的交互變化速度遠大於機械繫統的力與速度的變化,為了保證較高的模擬精度,要求模型的模擬步長要遠小於一般機械繫統模型的模擬步長。