純電動汽車絕緣檢測電路
Ⅰ 新能源汽車絕緣故障解決方法
電動汽車有一個很大的潛在讓人害怕的地方是觸電,因此有了一份專門針對車輛電氣安全的安全標准《GB/T 18384.3-2015 電動汽車安全要求第3 部分:人員觸電防護》。裡面有關於電氣安全的部分有不少,其中對於絕緣故障可能造成高壓電暴露,引起人身傷害。這個起始閾值也做了最小的規定,動力系統的測量階段最小瞬間絕緣電阻為0.5kΩ/V交流、直流為0.1kΩ/V。 各整車廠開發的純電動車輛, 則根據各自設定的電壓等級來確定動力系統的絕緣電阻報警閥值,還有一個非常重要的是絕緣檢測的策略和容錯策略。圖1 整車絕緣問題概覽
第一部分 絕緣檢測的故障原因
電動汽車絕緣的問題主要可以分為:
內部:這部分我們細致的展開,從大的來看,主要是電解液泄露、外部液體進入、絕緣層被破壞之後,電池模組和單體出現了導電的迴路。這類故障發生之後可能會發生較為嚴重的後果(主要是打火和燒蝕,引起模塊內單體的短路故障)。
在大的模組內,我們可以找到通過模組內部、BMU、BMS和模組與托盤等多種絕緣突破路徑。
BMU對於Coating的要求很高,大量有電位差的線纜通過連接器接入,如果出現凝露和電金屬遷移,容易在內部產生各種潛在導通路徑
模組內部由於振動、沖擊導致磨損、錯位,如果出現絕緣紙、藍膜失效的情況,就會出現絕緣問題
BMS和BDU這兩個部件由於高壓的直接接入,如果出現隔離失效,就會產生類似軟短路的情況發生
下圖所示,真正絕緣問題出現電擊人的情況,都需要出現人本身去接觸電池的一端輸出才會出現下圖的電擊事件發生。
2. 電池外部的高壓迴路:這部分可以通過接觸器斷開而隔絕
a) 高壓連接器和高壓線纜:這里比較多的情況是兩種,一種是局部放電引起的絕緣失效;還有就是連接器金屬物質遷移導致的絕緣失效。
備註:在這個案例裡面,通電,高溫,潮濕,氯離子存在的條件下,電連接器內部金屬構件發生了表面鍍銀層的電遷移和主體材料的腐蝕,產物在電場的作用下附著在絕緣組件上並將外金屬套殼和與內金屬觸條一體的金屬構件連接,從而導致電連接器絕緣阻值大幅降低失效。
b) 高壓用電部件內部出現絕緣失效:把內部的連接器、連線歸於上一類以後,基本就考慮功率部件相關的絕緣防護是否合理。特別的如電機、變壓器內絕緣情況。
從場景上區分,可以分解成充電狀態、正常狀態、涉水、碰撞事故、結露、暴雨、淹沒、清洗等狀態。這是貫穿整個壽命周期和使用場景對各個環節進行考慮的結果,當然實際整車級別的驗證測試也需要涵蓋。
從路徑上分,可以從爬電距離、固態絕緣和空氣間隙等方面對絕緣進行破壞。
以上這些,都算是真正絕緣發生了問題。還有一些問題就是絕緣檢測電路和演算法本身受到干擾或者出現了硬體的損壞。我們可以細分為:
絕緣檢測超差:受到外部干擾檢測出來過高,設計范圍超差
絕緣檢測失效:電路由於開關(光耦或者高壓繼電器失效)出現失效
第二部分 車輛診斷與處理和漏電車輛處理
我們還是以LEAF為例,其DTC分了三個故障:
模式A:是從動力源頭切斷任何充電和放電的過程,主要響應比較高等級的故障
模式B:考慮電池的故障在一定范圍內之類,限制電機輸出功率,在充電模式下充電停止(阻止了能量回收)
模式C:限制電池包的輸入和輸出功率
模式D:僅亮起故障等,其他不做處理
這里的三個定義為處理絕緣值信號(P33DF是判斷信號異常高、P33E0是採集信號異常低,P33E1是出現絕緣報警),這里分層的原因主要是是對整個故障錯誤分類。不過我倒是看到有不同的處理方法。我們在這里可以有幾個區分點:
啟動之時:啟動的時候檢測可以根據數值、診斷電路本身情況、整個系統上電的范圍,可以判斷出問題出在哪裡。根據數值的不同選取處理辦法。嚴格來說,根據在不同狀態下,絕緣電阻的測量誤差可以做不同的策略。
充電檢測:這個我會後面仔細談一談快充多迴路檢測過程中可能出現的問題。這個在法規層制定的時候就已經有很多的涉及和探討。
車輛行駛過程中:這點是我覺得很保守的,在車輛行駛過程中,由於有各方面的干擾存在包括紋波、電壓在大電流充放過程的變化,使得整個記錄的頻次需要用計數器來做;根據數值也可以做不同的策略來判斷這個嚴重情況,執行限功率或者更好的措施。
區分了DTC之後,當發生了絕緣故障之後,對於維修人員首先應保證人員安全,操作者須配戴好有一定安全等級,符合國家相關標准要求的防護用品(防護用品通常有使用年限要求),如絕緣手套(橡膠手套+外用手套)、絕緣鞋等。
這里有個絕緣電阻的參考表,用絕緣表來測非帶電部件還是比較管用的。從車輛的壽命周期考慮,維護過程中還是安置一個MSD是比較靠譜的,能夠在接觸器粘連和各種意外條件下保證匯流排上是沒有電的。
Ⅱ 純電動汽車漏電感測器是如何工作的
漏電感測器主要功能:
含有CAN通信功能,主要監測與動力電池輸出相連接的正極或負極母線與車身底盤之間的絕緣電阻判定高壓系統是否存在漏電,漏電感測器將漏電數據信息通過CAN信號發送給電池管理器、VTOG,採取相應保護措施。
比亞迪e5高壓電控總成內部裝有漏電感測器(LS),當漏電感測器檢測到漏電信號時,他通過CAN線將信號發送給BMS,由BMS進行相關控制,即:絕緣阻值/動力電池組電壓,與下表進行比較
Ⅲ 跪求:絕緣監測儀用於電動汽車的甚麼地方希望有個專業的解釋解釋。
絕緣電阻測試是測試和檢驗電氣設備的絕緣性能的比較常規的手段, 所使適用的設備包括馬達、變壓器、開關裝置、控制裝置和其他電氣裝置中繞組、電纜以及所有的絕緣材料。同時也是高壓絕緣試驗的預備試驗, 在進行比較危險和破壞性的實驗之前,先進行絕緣電阻的測試,可以提前發現絕緣材料的比較大的絕緣缺陷, 並提前採取相應的措施, 避免完全破壞被試物的絕緣. 最佳的方法由被測設備類型和測試目的所確定。其中帶有繞組或電介質材料的被試物或電容的測量中,吸收比和極化指數是判斷其絕緣特性非常重要的指標。
絕緣測試只能在不通電的電路上進行。
絕緣電阻測試是為了了解,評估電氣設備的絕緣性能而經常使用的一種比較常規的試驗類型。通常技術人員通過對導體、電氣零件、電路和器件進行絕緣電阻測試來達到以下目的:
l 驗證生產的電氣設備的質量
l 確保電氣設備滿足規程和標准(安全符合性)
l 確定電氣設備性能隨時間的變化(預防性維護)
l 確定故障原因(排障)
一般而言,對於絕緣測試有以下類型:設計測試、生產測試、交接驗收測試、預防性維護測試以及故障定位測試。不同的測試類型取決於不同的測試目的和應用領域,並且不同絕緣的測試過程也具有不同的特點。
1. 設計測試
設計測試一般用於在實驗室中確定電氣器件的性能。設計測試通常是由製造商對新設計的器件或是從其它公司外購的、用於產品設計之中的器件進行測試。設計測試檢查的是器件是否有故障。在製造任何產品之前都要進行絕緣電阻測試。
在測試絕緣時,對每一器件施加高壓,直到器件的絕緣發生故障,產生的漏泄電流高於可接受的電流。不僅在第一次設計產品時要進行設計測試,而且只要對產品進行修改,都要進行測試。對於不同的器件,根據其不同的工作電壓,工作狀況以及性能要求,需要對其進行不同的電壓的測試來測量,這就需要測試儀器應該具有不同的測試電壓
2. 生產測試
為了確保在實驗室工作正常的產品在生產之後仍然工作正常,就必須對每個產品進行生產測試。生產測試由製造商進行,以滿足規范和標準的要求,並保證質量的控制。在新產品和設備投入使用之前,對其進行絕緣電阻測試。在生產測試中,產品缺陷一般就會顯露出來。生產測試通常是非破壞性。由於必須對生產線上的准備安裝的元器件的性能進行是否滿足絕緣要求的試驗。由於這種測試的目的只是驗證元器件是否有足夠的絕緣強度,而不是整體設備的出廠驗收試驗,因此不需要具體的參數,只是需要驗證合格與否
3. 交接驗收測試
驗收測試由安裝者在完成安裝之後,但是在系統投入使用之前進行。驗收測試包括絕緣電阻測試,以檢查是否有設備損壞、電纜損傷,電氣器件之間的間距是否合適和牢固性,以及儲存、運輸和安裝是否導致產品損壞。
4. 預防性測試
許多工廠都把對設備進行絕緣電阻和導線測試做為其整體預防性維護程序的一部分。導線絕緣層的狀況是設備和電氣系統總體狀況的一個很好的指示。好的預防性維護程序可以在故障造成停工之前檢測到並消除故障。
必須對失效的絕緣進行維修,以確保系統不會在不適當的時候發生故障。一般而言,所有的系統在長時間工作後,其導線的絕緣層質量都會以
5. 排除故障時進行的絕緣測試
即使製造的設備是高指標的、安裝合確,並進適、規格正行預防性維護測試,但是仍然需要故障定位測試,因為設備依然會發生故障。故障通常是由某個故障電路中脆弱或損壞的零件引起的。當一個器件、設備、電路或系統發生故障時,就會利用絕緣電阻測試來定位故障。利用絕緣電阻測試來排障需要具備設備、電路和測試儀器的知識。
6. 日常的維護
通常所有的電氣設備都是需要日常的維護的。維護的目的是發現可能存在的故障隱患或微小的故障。早一點發現這些隱患或微小的故障,可以在沒有形成損失(停工,設備損傷或人身傷害)或損失非常小的事後消除這些隱患或故障。日常維護通常可以分為定期維護和不定期維護, 或根據為維護測試的目的分為預防性維護和預測性維護等等。
定期的日常維護性的實驗以特定的間隔進行的工作,用來防止停工和生產效率低下,根據時間確定計劃,例如每天、每周、每月、每季度,或設備每工作幾小時。任務包括設備檢查、定期檢查潤滑油、調整設備和更換零件、檢查運行設備的電氣、水壓和機械繫統。在全年中對一個或幾個設備進行定期維護。不定期維護由維護人員所進行的隨機維修包括應急工作和停工檢修。
預防性維護是為了使設備保持峰值工作狀態,將定期維護和不定期維護相結合進行維護;預測性維護則是根據預先確定的容差監測磨損狀況和設備特性,預測可能發生的故障。
Ⅳ 純電動汽車絕緣故障是什麼原因
電動汽車有一個很大的潛在讓人害怕的地方是觸電,因此有了一份專門針對車輛電氣安全的安全標准《GB/T 18384.3-2015 電動汽車安全要求第3 部分:人員觸電防護》。裡面有關於電氣安全的部分有不少,其中對於絕緣故障可能造成高壓電暴露,引起人身傷害。這個起始閾值也做了最小的規定,動力系統的測量階段最小瞬間絕緣電阻為0.5kΩ/V交流、直流為0.1kΩ/V。 各整車廠開發的純電動車輛, 則根據各自設定的電壓等級來確定動力系統的絕緣電阻報警閥值,還有一個非常重要的是絕緣檢測的策略和容錯策略。
Ⅳ 新能源汽車絕緣檢測原理
當前主流的絕緣檢測方法有兩種,電橋法和交流注入法,但這一功能由電池管理系統BMS來實現。電橋法又稱被動檢測法,主要原因必須有高壓才能進行絕緣檢測。交流注入法又稱主動檢測法,因為只需12V鉛酸上電即可完成絕緣檢測功能。關於絕緣檢測的專利大家去網上搜搜也非常的多,但大多也是基於上述兩種方法的演變和優化。大致總結如下(若有不妥,歡迎探討,更歡迎批評指正):
打開網路APP,查看更多高清圖片
電橋法重難點解讀:
(一)電橋法的檢測原理
電橋法的工作原理是BMS通過檢測高壓正與高壓負之間的分壓變化來計算正極/車身與負極/車身的絕緣阻值,檢測原理如下三步:
1. 閉合開關S1,閉合開關S2:BMS檢測到V1,V2的電壓;
2. 閉合開關S1,斷開開關S2:BMS檢測到V1』的電壓;
3. 斷開開關S1,閉合開關S2:BMS檢測到V2』的電壓;
4. 根據上述三個步驟,已知電池的總電壓U以及正負極橋臂的分壓電阻及其比例,可以列出三個方程U=aV1+bV2,
5. 根據這個方程式來解方程可以求得:正極/殼體阻值=Rp,負極/殼體=Rn
兩個阻值便是我們平時整車上讀取到絕緣值,以上即為電橋法的檢測原理。
(二)電橋法的設計難點
電橋法的穩定性及可靠性還需重點考慮如下幾點(上述四個電壓值V1,V2,V1』,V2』以下統稱V1,V2,歡迎補充和探討):
1. 分壓比例及ADC的選取:
絕緣檢測為了兼顧成本會犧牲一部分精度(採用12bit ADC采樣,甚至直接用單片機內部的ADC采樣),這個時候對電阻的分壓比例(R1/R2或R4/R3)的選取提出較高的要求,
電阻分壓比例太大采樣解析度不夠,無法做到較高精度;
電阻分壓比例太小采樣超出量程,無法做到全電壓范圍的采樣;
2. 寄生電容的影響:
大家都知道,整車上寄生電容的實際存在(一般在幾百納法級,也有遠大於這個量級的)。
由於寄生電容會導致V1,V2電壓值穩定需要一定時間,這個時候就會出現幾個問題:
BMS無法准確判斷V1,V2電壓的穩定采樣點,電容電壓未穩定或者電容開始漏電導致V1,V2的電壓不是真實分壓的值,這樣計算出來的絕緣值不準,這也是前幾年有些車絕緣不穩定的要因之一,現在好多了;
BMS等待電壓穩定的時間,等待的時間過長導致絕緣檢測時間偏長,可能不滿足功能安全中FTTI的時間要求;
寄生電容值隨著天氣以及車輛的老化會發生改變,這個時候要確保設計仍然滿足前期的采樣精度和時間目標就對演算法的穩定性及適應性提出了較高的要求,主要硬體電路以及軟體濾波要考慮;
3.電壓V1,V2的采樣同步實時性的影響
理論上V1,V2的實時性越高對絕緣采樣精度及穩定性越有利,但是很遺憾這個也只能是理論,顯然是無法完全同步的。為了方便理解,我暫且假定一個非常極端實車工況來說明同步實時性的影響:
階段一:猛踩油門踏板上陡坡,此時BMS恰好為步驟2檢測V1』;
階段二:猛踩制動踏板下陡坡,此時BMS恰好為步驟3檢測V2』;
大家可以先想想這個情景以及這個情景對絕緣檢測的影響。踩油門踏板的時候電池包對外大電流放電,由於鋰電池的DCR+極化內阻等存在,導致電池包的高壓會被急劇拉低(由電流的大小決定,一般在50~100V,以一個400V電壓來說電池實際輸出電壓為350V)。踩制動踏板的時候由於制動能量回收整車對電池包大電流充電,同理導致電池包的高壓會被瞬間抬高至450V。那麼問題就來了,V1』是以350V分壓檢測得到的,V2』是以450V分壓檢測得到的,用這一組電壓去計算絕緣是不妥的,輕則絕緣值誤差較大,最嚴重的情況下可能出現絕緣誤報漏報導致整車做了對應的故障策略。
Ⅵ 電動汽車充電樁專用絕緣檢測模塊有什麼作用
題主應該是指直流充電樁,主要用於檢測充電樁直流母線與地之間的絕緣電阻,一般情況下,直流部分與地絕緣,當這個絕緣電阻值低於預定值時,直流部分就不會接通,電路與電動汽車是斷開的,就不會對電動汽車及操作人員以傷害了。
Ⅶ 電動汽車絕緣電阻的檢測,檢測些什麼內容
根據你的描述。絕緣電阻檢測主要測量。高壓母線與車身之間的絕緣,電阻通常採用絕緣測試儀進行檢測。如果絕緣電阻低於規定值。說明高壓系統有漏電現象。望採納,謝謝。