電動汽車研究院的目標
⑴ 新能源純電動汽車未來的發展趨勢怎麼樣
充電設施保有量持續上升,補貼幅度退坡
2019年新能源汽車國家補貼幅度大規模退坡,新能源汽車地方補貼完全取消,獲得補貼的最低續航為250km,最高國家補貼減少了一半,為2.5萬元,依然是400km以上車型獲得。新能源汽車補貼政策幅度的大規模退坡表明將迎來全行業大洗牌,擁有核心技術的車企將擁有更強的競爭優勢生存,靠補貼生存的、靠地方政府政策補貼的車企將面臨較大挑戰。
雖然純電動汽車的普及遇到較大的挑戰與困難,但是汽車的電動化是未來汽車發展的必然趨勢,相信隨著技術的突破,市場對純電動汽車的接受度提高,純電動汽車的普及率將逐漸提高。
——以上數據來源於前瞻產業研究院《中國新能源汽車行業市場前瞻與投資戰略規劃分析報告》。
⑵ 未來15年新能源汽車產業發展規劃出爐,這些變化值得關注
公開徵求意見近一年時間,11月2日,關乎未來15年新能源汽車產業發展的《新能源汽車產業發展規劃(2021—2035年)》(以下簡稱《規劃》)終於正式發布。
圖片來源:蔚來汽車
在氫燃料供給體系建設方面,《規劃》提出,要提高氫燃料制儲運經濟性。因地制宜開展工業副產氫及可再生能源制氫技術應用,加快推進先進適用儲氫材料產業化。開展高壓氣態、深冷氣態、低溫液態及固態等多種形式儲運技術示範應用,探索建設氫燃料運輸管道,逐步降低氫燃料儲運成本。健全氫燃料制儲運、加註等標准體系。加強氫燃料安全研究,強化全鏈條安全監管。
此外,還將推進加氫基礎設施建設。建立完善加氫基礎設施的管理規范。引導企業根據氫燃料供給、消費需求等合理布局加氫基礎設施,提升安全運行水平。
有數據顯示,目前,我國已有36個城市公布氫能發展規劃與政策,另據不完全統計,目前全國已建成74座加氫站,在建32座,預計2020年加氫站保有量將超過100座。
結語:
當前,新能源汽車已成為全球汽車產業轉型發展的主要方向和促進世界經濟持續增長的重要引擎,我國新能源汽車產業也正處於加速發展的新階段。從《規劃》總體來看,未來15年部署的總體思路仍然堅持電動化、網聯化、智能化的發展方向,同時對現有發展中暴露的問題進行完善和提高,如我國新能源汽車產業要突破關鍵核心技術,提升產業基礎能力,構建新型產業生態,完善基礎設施體系等。總體而言,《新能源汽車產業發展規劃》(2021-2035)指明了未來15年新能源汽車產業的發展方向和目標,有利於推動我國新能源汽車產業高質量可持續發展,加快建設汽車強國。
本文來源於汽車之家車家號作者,不代表汽車之家的觀點立場。
⑶ 電動汽車科技發展「十二五」專項規劃的發展戰略與目標
1.自主創新
發展電動汽車要依靠自主創新,掌握核心技術。根據混合動力、純電動和燃料電池三種基本的電動汽車動力系統技術特徵與發展階段,靈活運用不同的自主創新方式,堅持以科技為支撐,以人才為根本,推動電動汽車技術的快速進步。
2.重點突破
緊緊把握汽車動力系統電氣化的戰略轉型方向,重點突破電池、電機、電控等關鍵核心技術,以及電動汽車整車關鍵技術和商業化瓶頸。
3.協調發展
發展電動汽車是一項系統工程,在研發、示範和市場導入初期需要一個有利的政策環境。通過制定引導性政策,產、學、研、用和社會各方力量形成合力,構建中國特色的電動汽車產業發展環境,推動我國電動汽車產業快速、健康發展。 電動汽車按動力系統電氣化水平分為兩類:一類是全部或大部分工況下主要由電機提供驅動功率的電動汽車(稱為「純電驅動」電動汽車,例如純電動汽車、插電式電動汽車、增程式電動汽車以及燃料電池電動汽車);另一類是動力電池容量較小,大部分工況下主要由內燃機提供驅動功率的電動汽車(稱為常規混合動力電動汽車)。從培育戰略性新興產業角度看,發展電氣化程度比較高的「純電驅動」電動汽車是我國新能源汽車技術的發展方向和重中之重。要在堅持節能與新能源汽車「過渡與轉型」並行互動、共同發展的總體原則指導下,規劃電動汽車技術發展戰略。
1.確立「純電驅動」的技術轉型戰略
順應全球汽車動力系統電動化技術變革總體趨勢,發揮我國的有利條件和比較優勢,面向「純電驅動」實施汽車產業技術轉型戰略,加快發展「純電驅動」電動汽車產品。實施這一技術轉型戰略,要依靠自主創新,堅持自主發展,突破電動汽車核心瓶頸技術;同時要充分利用國際資源,進一步提升我國汽車共性基礎技術水平,服務於「純電驅動」的技術轉型戰略。
2.堅持「三縱三橫」的研發布局
我國電動汽車研發在「三縱三橫」的技術創新戰略指導下,經過「十五」「三縱三橫、整車牽頭」和「十一五」「三縱三橫、動力系統技術平台為核心」兩階段技術攻關,取得了重大技術突破,形成了中國特色的電動汽車研發體系。「十二五」期間,繼續堅持「三縱三橫」的基本研發布局,根據「純電驅動」技術轉型戰略,進一步突出「三橫」共性關鍵技術。在「三縱」方面,純電動汽車、增程式電動汽車和插電式混合動力汽車作為純電驅動汽車的基本類型歸為一個大類;燃料電池汽車作為純電驅動汽車的特殊類型繼續獨立作為一「縱」;混合動力汽車主要為常規混合動力汽車。在「三橫」方面,「電池」包括動力電池和燃料電池;「電機」包括電機系統及其與發動機、變速箱總成一體化技術等;「電控」包括「電轉向」、「電空調」、「電制動」和「車網融合」等在內的電動汽車電子控制系統技術。 1.面向產業升級需求:產品研發,支撐發展
「十二五」是以汽車電控化和動力混合化兩大技術相結合為標志的產品換代與產業升級期。要推進各種常規混合動力汽車的產業化技術研發與大規模產業化。力爭使我國混合動力客車綜合性價比和市場佔有率處於國際先進水平;力爭使我國混合動力轎車具備國際市場競爭力。以混合動力技術為龍頭帶動傳統汽車節能減排技術的綜合集成與全面進步。為我國汽車行業實現汽車產業政策和油耗與排放法規的「十二五」目標提供技術支撐。
2.面向技術轉型需求:規模示範,產業引領
「十二五」是將汽車小型化和動力電氣化相匯合,發展我國小型電動轎車的機遇期。要實施「純電驅動」技術轉型戰略,探索純電驅動汽車技術解決方案、新型商業模式和能源供應體系。使我國在以小型電動轎車為代表的各類純電動汽車普及程度、以示範城市為平台的電動汽車全價值鏈整合水平、以鋰離子動力電池為重點的車用電池產業競爭能力等方面處於國際先進水平,為培育我國電動汽車戰略性新興產業發揮引領作用。
3.面向科技跨越需求:前瞻部署,創新突破
「十二五」是將能源多元化和動力一體化兩大趨勢相統一,研究下一代純電驅動平台,搶占電動汽車高端前沿制高點的科技攻堅期。要攻克以先進燃料電池/新型動力電池等為代表的一批前沿高端難點技術。開發出具有關鍵技術綜合集成性、先進成果展示標志性、系列化、高級別電動汽車,其綜合技術指標達到國際先進水平。為實現我國從汽車製造大國向汽車技術強國轉型奠定堅實基礎。
到2015年,在整車、關鍵零部件、公共平台等29個技術創新方向上實現關鍵技術突破,全面掌握核心技術,預期申請電動汽車核心技術專利達3000項以上。形成整車及零部件研發和產業化體系,建設新能源汽車基礎設施、產業標准體系和檢驗檢測系統,新增建節能與新能源汽車領域技術創新平台25個以上,組建各類產業技術創新戰略聯盟,培育形成一批國際知名的具有自主知識產權的關鍵零部件與整車企業。在30個以上城市進行規模化示範推廣,在5個以上城市進行新型商業化模式試點應用,為實現電動汽車規模產業化、尤其是純電驅動汽車銷量達到同類車型總銷量1%左右的重要門檻提供科技支撐,引領新能源汽車戰略性新興產業進入快速成長期,使我國躋身節能與新能源汽車產業先進國家行列。 電動汽車科技創新支撐新能源汽車戰略性新興產業發展的路線圖,具體可概括為技術平台「一體化」、車型開發「兩頭擠」、產業化推進「三步走」。
1.技術平台「一體化」
為了應對電動汽車技術多元化和車型多樣化問題,緊緊抓住「電池、電機、電控」三大共性關鍵技術,以關鍵零部件模塊化為基礎,推進動力總成模塊化,促進動力系統平台化,實現電動汽車技術平台「一體化」。
動力電池、電機、電子控制單元等關鍵部件模塊化,有利於規模化生產和應用,便於電池的維修、更換、租賃、梯級利用和回收處理。以通用化、系列化的動力電池模塊為核心,可以形成多樣化的車用動力電池系統,結合電機等基礎模塊,可開發各種純電驅動汽車;車用動力總成方面,以動力電池等關鍵零部件模塊為基礎,進一步提升系統集成層次,可發展出各種新型電氣化動力總成;混合動力、純電動和燃料電池汽車在電驅動總成方面核心技術相通,容易實現電動汽車技術平台的「一體化」,並可以共同培育一體化的零部件產業基礎。
2.車型開發「兩頭擠」
我國中高級別以上轎車的純電驅動平台技術尚不成熟,需要繼續深入研究開發,並作為科技跨越的重點研究內容。與此同時,對於電動汽車科技發展,充分發揮我國技術特色、產業優勢和市場潛力,在城市公共用大客車和私人小型轎車上優先發展「純電驅動」電動汽車,然後逐步從兩端向中間發展,形成「兩頭擠」格局,啟動大規模市場,並滾動發展,逐步擠佔中高檔燃油轎車這一市場空間。
一方面,要以城市公交車為重點,在現有常規混合動力大客車推廣應用的基礎上,加強各種純電驅動大客車的開發、推廣力度,形成主流商業模式,並繼續開展燃料電池-動力電池的電-電混合式大客車的研發和示範。另一方面,發展小型電動汽車(尤其是小型電動轎車)。燃油汽車小型化和電動汽車小型化是全球主流趨勢,在中國最具技術特色、產業優勢和市場潛力。小型電動汽車可以成為我國汽車工業自主創新的重要突破口,可以滿足我國快速城市化進程中交通可持續發展需求,可以促進我國電動汽車與充電設施以及電池產業之間的良性互動和滾動發展,可以形成大規模市場需求。
3.產業化推進「三步走」
電動汽車產業化初期,電動汽車產業化推進按照「三步走」的推進戰略,結合不同階段的技術進步程度和市場需求狀況,把握節奏,分步實施。
(1)第一階段:2008-2010 年
在大中城市公共服務領域開展新能源汽車示範。2008年開始的奧運示範項目,首次實現電動汽車規模化示範運行;2009年啟動「十城千輛」大規模示範推廣工程,全國13個示範城市約5000輛節能與新能源汽車投入示範運營;到2010年,示範城市從13個增加到25個,重點轉向純電驅動汽車,全國25個示範城市約8000輛節能與新能源汽車投入示範運營。
(2)第二階段:2010-2015 年
實現混合動力汽車產業化技術突破。開展以能量型鋰離子動力電池為重點,電池模塊化為核心的動力電池全方位技術創新,實現我國車用動力電池大規模產業化的技術突破。開展以小型電動汽車為代表的純電驅動汽車大規模商業化示範。開展電動汽車能源供應體系技術攻關,到2015年左右,在20個以上示範城市和周邊區域建成由40萬個充電樁、2000個充換電站構成的網路化供電體系,滿足電動汽車大規模商業化示範能源供給需求。為實現電動汽車規模產業化,尤其是純電驅動汽車銷量達到同類車型總銷量1%左右的重要門檻提供科技支撐。
同時,攻克新型鋰電池、深度機電耦合、新型電機驅動等前沿技術,研發以燃料電池汽車為代表的下一代純電驅動動力系統平台,實現燃料電池汽車在公共服務領域小規模示範考核。為下一代純電驅動汽車產業化做好准備。
(3)第三階段:2015-2020 年
繼續推進以小型電動汽車為代表的純電驅動汽車規模產業化,並開始啟動下一代純電驅動汽車產業化進程。
在此階段,以下一代動力電池技術路線為主導,開啟下一代動力電池和燃料電池產業化。確立純電驅動轎車主導商業模式,並完善發展基礎設施網路,提高車網融合程度。到2020年左右,為實現各類電動汽車推廣普及提供技術支撐。
⑷ 新能源汽車是大勢所趨,新能源汽車行業的現狀和未來是什麼
汽車的電動化趨勢給傳統汽車帶來的改變是革命性的。傳統汽車的動力傳遞路線非常復雜,發動機、離合器、變速器、自動變速器、驅動橋,目前,像德國、法國等國家已經明確公布了停止銷售燃油車的時間表,中國目前來說還沒有計劃啟動,在國家政策的引導下,新能源汽車的研發和產業化出現了前所未有的高潮。而伴隨著我國新能源汽車的快速發展不過發動機從2.0T降到1.5T驍雲,輪轂從22寸降到20寸,輪胎從馬牌性能胎變成其它輪胎,剎車卡鉗也從跑車卡鉗變成普通卡鉗
⑸ 電動汽車的發展方向是哪裡電動汽車的電池技術會怎樣進步
前瞻產業研究院《中國電動汽車行業市場需求預測與投資戰略規劃分析報告》
上世紀70年代全球三次石油危機爆發後,各跨國汽車公司先後開始研發各種類型的電動汽車。我國經過「八五」、「九五」、「十五」三個五年計劃,在研發電動汽車的專項上投入了大量的人力、物力和財力,並取得了一系列科研成果,但是,迄今為止,這些科研成果真正能轉化為產品,並實現產業化生產的項目並不多。國外大汽車公司投入遠比我國更多的資金和人力,已投入批量生產的電動汽車產品也寥寥無幾。隨著全球能源危機的不斷加深,石油資源的日趨枯竭以及大氣污染、全球氣溫上升的危害加劇,各國政府及汽車企業普遍認識到節能和減排是未來汽車技術發展的主攻方向,發展電動汽車將是解決這二個技術難點的最佳途徑。下面將為您介紹電動汽車的現狀與發展趨勢。
一、電動汽車的現狀
現代電動汽車一般可分為三類:純電動汽車(BEV)、混合動力汽車(HEV)、燃料電池電動汽車(FCEV)。但是近幾年在傳統混合動力汽車的基礎上,又派生出一種插電式(Plug-In)混合動力汽車,簡稱PHEV。本文將電動汽車技術研發的若干問題和趨勢,作簡要的介紹和評述。
1、純電動汽車(BEV)
純電動汽車是指完全由動力蓄電池提供電力驅動的電動汽車,雖然它已有134年的悠久歷史,但一直僅限於某些特定范圍內應用,市場較小。主要原因是由於各種類別的蓄電池,普遍存在價格高、壽命短、外形尺寸和重量大、充電時間長等嚴重缺點。目前採用的鉛酸電池、鎳氫電池和鋰離子電池,它們已達到的實際性能指標和市場平均價格,如表1所示。根據實際裝車時的循環壽命和市場價格,可估算出電動汽車從各種動力電池上每取出1kWh電能所必須付出的費用。計算時,假設電池最高可充電荷電狀態(SOC)為0.9,放電SOC為0.2,即實際可用的電池容量僅占總容量的70%;由電網供電價為0.5元/kWh,電池的平均充放電效率為0.75。
從表1的粗略計算中可知,雖然從電網取電僅需
0.5元/kWh,但充入電池,再從電池取出,鉛酸電池每提供1kWh電能,價格為3.05元左右,其中2.38元為電池折舊費,0.67元為電網供電費,而從鎳氫電池中每提供1kWh電能,費用為9.6元,鋰離子電池為10.2元,即後二種先進電池供電成本是鉛酸電池的三倍多。
目前國內市場上用柴油機發電,價格大致為3元/kWh,若用汽油機發電,供電價格估計為4元/kWh,即從鉛酸電機提供電能的價格大致和柴油機發電價格相等,僅僅從取得能量的成本來考慮,採用鉛酸電池比汽油機驅動有一定價格優勢,但是由於它太過笨重,充電時間又長,因此只被廣泛用於車速小於50km/h
的各種場地車、高爾夫球車、垃圾車、叉車以及電動自行車上。實踐證實鉛酸電池在這一低端產品市場上有較強的競爭力和實用性。
鎳氫電池的主要優點是相對壽命較長,但是由於鎳金屬占其成本的60%,導致鎳氫電池價格居高不下。鋰離子電池技術發展很快,近10年來,其比能量由
100Wh/kg增加到180Wh/kg,比功率可達2000W/kg,循環壽命達1000次以上,工作溫度范圍達-40~55℃。美國USABC在
2002年制定的鋰離子電池技術發展目標如表2所示。
近年由於磷酸鐵鋰離子電池的研發有重大突破,又大大提高了電池的安全性。目前已有許多發達國家將鋰離子電池作為電動汽車用動力電池的主攻方向。我國擁有鋰資源優勢,鋰電池產量到2004年已佔全球市場的37.1%,預計到2015年以後,鋰離子電池的性/價比有望達到可以和鉛酸電池競爭的水平,而成為未來電動汽車的主要動力電池。
圖1示出了國內外各種純電動車輛數量/性能和價格/性能曲線,以電動自行車為代表的低性能車輛,由於其成本低廉,僅我國在2006年已達到年產2000萬輛,美國通用汽車公司生產的沖擊1號電動跑車,雖然已達到了很高的動力性,但是由於售價高昂,僅生產了區區50輛,由於沒有市場而不得不停產。性能較低的場地車,在我國年產達7000~8000輛左右;天津清源電動車公司生產的微型電動車,最高車速僅50km/h,年產也可以達千輛以上,這可能是目前市場所能接受的純電動車輛性能的上限。上述所有電動車輛均採用鉛酸電池為動力。隨著高性能鋰離子電池的性/價比不斷提升,未來5~10年內,市場上可能會出現最高車速≥100km/h,續駛里程≥250km的高性能純電動汽車。
2、混合動力電動汽車(HEV)
由於完全由動力蓄電池驅動的純電動汽車,其性能/價格比長期以來都遠遠低於傳統的內燃機汽車,難於與傳統汽車相競爭,上個世紀90年代以來各大汽車公司都著手開發混合動力汽車。日本豐田公司在1997年率先向市場推出「先驅者」(Prius)混合動力汽車,並在日本、美國和歐洲各國市場上均獲得較大成功,累計產銷量已超過60萬輛。隨後日本本田、美國福特、通用和歐洲一些大公司,也紛紛向市場推出各種類型的混合動力汽車。
2.1 研製全混合電動汽車的必要性
混合動力電動汽車是指具備兩個以上動力源、而其中有一個可以釋放電能的汽車。混合動力汽車按混合方式不同,可分為串聯式、並聯式和混聯式三種;按混合度(電機功率與內燃機功率之比)的不同,又可分為微混合、輕度混合和全混合三種。其中外掛式皮帶驅動起動/發電(BSG)式是微混合動力汽車的典型結構,其電機功率一般僅2~3kW,依賴發動機的停車斷油功能,可節燃油5~7%;在發動機曲軸後端加裝一個電動/發電型盤式電機(ISG)是輕度混合動力汽車的典型結構;具有純電力驅動功能的可作為全混合或混聯式混合動力汽車的典型。豐田公司的Prius轎車即屬於這類全混合汽車。目前我國若干汽車企業研製的混合動力汽車,大多採用ISG輕度混合或BSG微混合方案,主要是考慮這二種方案的技術難度較小,生產成本也較低。但是根據研究表明,混合動力汽車的節油率幾乎與汽車功率的混合度和汽車的生產成正比上升(如圖2)。因此,從長遠來看,研製全混合電動汽車是一種必然趨勢。
2.2 研發及市場情況
下面分別介紹混合動力乘用車和混合動力公交車的研發及市場情況。
以節油率最佳的豐田Prius汽車為例,在我國實測它與豐田花冠(Corrolla)油耗在不同工況下的對比數據如表3所示。各種工況下的平均節油率為39.6%,平均百公里可節油3.07L。
以97號汽油價格為5元/L計算,每百公里可節省油費15.35元,行駛20萬km也僅省油費3.07萬元,顯然還不足以抵消購置混合動力汽車所增加的費用。據中國汽車工業協會統計,2006年一汽豐田普銳斯(Prius)銷量僅為2152輛,佔全國乘用車總銷量的0.04%。考慮到我國用戶對汽車售價的敏感性,這一銷售業績並不令人驚奇,可以認為在近期,如果沒有政府的大力支持,混合動力乘用車在我國不會有很大的市場。
2.3 城市公交車的使用特點
在我國,城市公交車與私人乘用車的情況有很大的不同,具體歸納為以下三點:
(1)據統計我國城鎮居民日常出門有70%是首選乘坐公交車,我國大部分城市政府都奉行公交車優先的交通政策,我國公交車的年產量和保有量都居世界第一;
(2)我國城市公交車大多由市政府補助公交企業采購,公交車是否符合節油減排要求,將是政府需要考慮的一個重要采購原則;
(3)從技術角度來分析,在城市工況下,公交車頻繁起步、加速、制動和停車,要額外消耗許多燃油。表4列出了在國外四種典型城市工況下,汽車制動消耗能量(油耗)所佔比例,其算數平均值達47.1%。即有近一半的燃油是被汽車頻繁制動所消耗的,這就為混合動力公交車的節油減排留下了相當大的空間。
正是考慮到以上幾個特點,我國至少有7~8家汽車企業將研發、生產混合動力公交車作為研發工作的重點。經過近幾年的開發,雖然已取得了一系列重大成果,但公交車的節油率並未達到預計的要求,一輛總重15.5t,長11m的混合動力公交車,實際油耗大多為33~35L,平均34L/100km,若傳統
11m公交車的平均油耗為40L/100km,則節油率僅15%。
2.4節油率難以進一步提高的原因
分析節油率難以進一步提高的原因主要有二個:
(1)汽車的制動過程十分短暫,一半不超過10s,在短短的幾秒內,電機要求發出很大的電流,才能有效回收制動能量,但是電池的充電倍率只有放電倍率的一半,因此電池不能接受大電流充電。理論上汽車有50~60%的制動能量可回收,實際回收的制動能量<20%,最簡單的改進辦法是加大動力電池容量,例如至少加大容量一倍,回收的制動能量可由20%增加到40%。但這將大大增加整車成本和汽車自重,經濟上可能是得不償失。<
div="">
(2)混合動力公交車若採用停車斷油,甚至滑行時即斷油,可節油10%左右(4L/100km),實際上國產柴油機沒有專門為混合動力汽車設計,一般不允許頻繁的停車斷油,否則供油系和廢氣增壓器都可能損壞,嚴重影響柴油機壽命。其次,停車斷油就必須裝有電動轉向油泵、電動空壓機和電動空調系統,這又會大大增加整車成本和重量,二相權衡,不一定合算,所以近期大多未實現停車斷油功能。因此,目前HEV的開發重點集中在節油降耗的工作上,針對以上問題,科研工作者提出了不同的解決方案,如利用超級電容器的功率密度達鉛酸電池的10倍,具有快速吸收大電流充電的優異特性,在混合動力汽車制動時可以快速吸收能量,大大提高制動能量的回收率,此外它還具有循環壽命長、充放電效率高、耐低溫特好以及免維護等優點。這種方案由於受到超級電容價格昂貴的影響,限制了它在混合動力汽車上的廣泛應用。在進一步降低成本,提高能量密度後,超級電容器最有可能首先在混合動力公交車上得到應用。
3、插電式混合動力汽車
插電式混合動力汽車是最新的一代混合動力汽車類型,近年來受到各國政府、汽車企業和研究機構的普遍關注,國內外專家認為,PHEV有望在幾年後得到廣泛的推廣使用。
據統計,法國城鎮居民80%以上日均駕車里程少於50km,在美國,汽車駕駛者也有60%以上日均行駛里程少於50km,80%以上日均行駛里程少於
90km。PHEV特別適合於一周有5天僅駕車用於上下班,行駛里程50~90km之間的工薪族使用。PHEV是在混合動力汽車上增加了純電動行駛工況,並且加大了動力電池容量,使PHEV採用純電動工況可行駛50~90km,超過這一里程,即必須起動內燃機,採用混合驅動模式。所以PHEV的電池容量一般達5~10kW·h,約是純電動汽車電池容量的30~50%,是一般混合動力汽車電池容量的3~5倍,可以說它是介於混合動力汽車與純電動汽車之間的一種過渡性產品。與傳統的內燃機汽車和一般混合動力汽車(HEV)對比(見表5),PHEV由於更多的依賴動力電池驅動汽車,因此它的燃油經濟性進一步提高,二氧化碳和氮氧化物排放更少。由於動力電池容量的加大,每輛車的售價至少比一般HEV高2000美元。
圖3示出了四種不同類型乘用車,它們的蓄電池容量與汽車價格、燃油消耗及尾氣排放的對比關系。可見隨著蓄電池容量的加大,汽車價格將上升,但是燃油消耗和尾氣排放則下降。因此可以認為,電動汽車是以使用和損耗蓄電池為代價來換取節油、減排的效果,動力電池性/價比的大幅提升將是電動汽車能否迅速推廣使用的關鍵所在。
一般HEV動力電池SOC僅在較小范圍內波動(例如±2%~3%)因此循環壽命次數很長,而PHEV的動力電池SOC必須在很大的范圍內波動(例如±40%),屬於深充深放,因此循環工作壽命短得多,和純電動汽車(PEV)相似。目前在PHEV上都採用先進的鋰離子電池,由表1可知,鋰離子電池每放出1kWh電能,能耗費為10.2元,相當於內燃每
kWh能耗費用的3倍。隨著全球石油價格不斷上升,燃油內燃機的能耗費用也將不斷上升,而鋰離子電池隨著技術進步和產量的擴大,其能耗費用將不斷下降(如圖4所示),二者可能在2015至2020年內達到平衡點。因此PHEV有望在10年內得到大面積推廣使用。
4、燃料電池電動汽車
早在1839年,英國人格羅孚就提出了氫和氧反應發電的原理。20世紀60年代,研發出了液氫和液氧發電的燃料電池,由美國UTC公司首先用於航天和軍事用途。近20年來,由於石油危機和大氣污染日趨嚴重,以質子交換膜式為代表的燃料電池技術,受到世界各國普遍重視。各大跨國汽車公司紛紛投入巨資,研發出了各種類型的燃料電池電動汽車(FCEV)。
4.1質子交換膜燃料電池(PEMFC)主要優點
(1)其排放生成物是水及水蒸汽,為零污染;
(2)能量轉換效率可高達60~70%;
(3)無機械振動、低雜訊、低熱輻射;
(4)宇宙質量中有75%是氫,地球上氫也幾乎是無處不在。氫還是化學元素中質量最輕、導熱性和燃燒性最好的元素;
(5)氫的熱值很高,1kg氫和3.8L汽油的熱值相當。
4.2燃料電池電動汽車存在的技術、經濟問題
在我國,國家科技部將研發燃料電池客車和燃料電池轎車列為「十五」和「十一五」計劃「863」重大科技項目。並已取得一系列重大科技成果,但是在多年科研實踐中,也暴露出一些技術、經濟問題:
(1)燃料電池發動機的耐久性壽命短
一般僅1000~1200小時(國外達2200小時),燃料電池汽車行駛4~5萬km,功率即下降~40%,和傳統內燃機可普遍行駛50萬km以上相比,差距很大;
(2)燃料電池發動機的製造成本居高不下
一般估計3萬元/kW(國外成本約3000美元/kW),與傳統內燃機僅200~350元/kW相比,差距巨大。由於其中如質子交換膜、炭紙、鉑金屬催化劑、高純度石墨粉、氫回收泵、增壓空氣泵等關鍵部件均依靠進口,所以與國外相比,並沒有成本優勢;
(3)燃料電池發動機對工作環境的適應性很差
國產可在0~40℃氣溫下工作,低於0℃有結冰問題,高於40℃過熱不能正常工作;此外對空氣中的粉塵、一氧化碳、硫化物等都十分敏感,鉑催化劑極易污染中毒失效;
(4)燃料電池汽車的使用成本過於高昂
例如高純度(99.999%)高壓氫(>200大巴)售價約80~100元/kg。按1kg氫可發10kW·h電能計算,僅燃料費即約為10元
/kW·h,按燃料電池發動機工作壽命1000小時計算,折舊費為30元/kWh。所以總的動力成本達40元/kW·h。與表1對照可知,至少在目前,由燃料電池發動機提供1kWh電能的成本遠高於各種動力電池,這從一個側面反映了作為汽車動力源,燃料電池汽車還有相當的距離。
4.3目前燃料電池電動汽車的研究課題
盡管存在如此多的問題,但是燃料電池仍然是人類迄今為止,發明的最清潔、安靜又可無限再生的能源,值得我們為實現燃料電池電動汽車的產業化,付出更大的努力。
為此建議從以下幾個方面進行工作:
(1)以更為創新的思維,對燃料電池的基本理論和基礎材料進行深入研究,例如努力探尋非鉑金屬催化劑;努力研製抗電腐蝕金屬雙極板和耐高溫(>110℃)高機械強度質子交換膜等;
(2)努力實現如炭紙、增壓空氣泵等關鍵零部件的國產化,以降低整機成本;
(3)進一步提高整機的優化集成技術,著力提高整機的耐候性(高、低氣溫變化)、抗大氣污染能力和耐電負荷急劇變化能力等。
5、電機及電動車輪的分類
電動汽車驅動電機是所有電動汽車必不可少的關鍵部件。目前使用較多的有直流有刷、永磁無刷、交流感應和開關磁阻等四種電機。
美國和德國開發的電動汽車大多採用交流感應電機,主要優點是價格較低、效率高、重量輕,但啟動轉矩小。日本研製的電動汽車幾乎全部使用永磁無刷電機,其主要優點是效率可以比交流感應電機高6個百分點,但價格較貴,永磁材料一般僅耐熱120℃以下。開關磁阻電機結構較新,優點是結構簡單、可靠、成本較低、起動性能好,沒有大的沖擊電流,它兼有交流感應電機變頻調速和直流電機調速的優點,缺點是雜訊較大,但仍有一定改進餘地。表6列出四類電機比較。
顯然表6中四種電機各有優缺點,但是對於電動汽車而言,由於電能是由各類電池提供,價格昂貴而彌足珍貴,所以使用相對效率最高的永磁無刷電機是較為合理的,它已被廣泛用於功率小於100kW的現代電動汽車上。
此外,在國外已有越來越多的電動汽車採用性能先進的電動輪(又稱輪轂電機),它用電機(多為永磁無刷式)直接驅動車輪,因此無傳統汽車的變速箱、傳動軸、驅動橋等復雜的機械傳動部件,汽車結構大大簡化。但是它要求電機在低轉速下有很大的扭矩,特別是對於軍用越野車,要求電機基點轉速∶最高轉速=1∶10(見圖5)。近幾年,美、英、法、德等國紛紛將電動輪技術應用於軍用越野車和輕型坦克上,並取得了重大成果。例如美海軍陸戰隊在「悍馬」基礎上研製出串聯式「影子」新型混合動力越野車,採用了電動輪技術,其結構及主要技術參數如表7所示。與傳統「悍馬」車對比試驗,在同樣偵察試驗條件下,「悍馬」耗油472kg,而「影子」僅耗油200kg;同一越野路段,「悍馬」耗時32分鍾跑完,而「影子」僅耗時13分50秒,此外它還具有在純電動模式下,汽車靜音、無「熱痕跡」等優點。如此優異的性能,據聞美軍已決定停產傳統「悍馬」車,全部改產新型混合動力電動輪驅動的「影子」型軍車。這一重要發展趨勢,應引起高度關注。
二、電動汽車發展趨勢
綜上所述,可以從技術/經濟分析出發,對電動汽車技術的現狀和未來作如下結論:
(1)在目前國內市場價格的基礎上,可粗略計算出各種提供電能技術的價格比。即電網供電∶柴油機供電∶鉛酸電池供電∶鎳氫電池供電∶鋰離子電池供電∶燃料電池供電=1∶6∶6∶19.2∶20.4∶80。這從一個側面反映了各種供電方式距離電動汽車市場的遠近。當然,隨著石油價格的上升、電池技術的進步,這些比例關系將發生很大的變化;
(2)由於鉛酸電池的供電成本大體和柴油機供電相等,因此它仍然是低端電動車市場的主要動力電池。磷酸鋰離子電池技術進步較快,它最有可能成為鉛酸電池的競爭對手,率先成為高端電動車市場的主要動力電池;
(3)由於混合動力汽車僅需裝用純電動汽車1/10的動力電池容量,整車有較為接近市場的性/價比,因此它仍將是近期實現產業化的主要電動汽車種類。考慮到我國國情,目前仍應大力推廣使用混合動力大客車,進一步降低製造成本,減少油耗和排放;
(4)在鋰離子電池性/價比進一步提升後,外接充電式混合動力汽車(PHEV)有望成為理想的上班族乘用車,它可大幅度減少油耗和降低排放,但是由於較高的價格,它可能首先在發達國家得到推廣應用;
(5)燃料電池雖然是理想的清潔能源,但是目前它的性/價比太低,要達到可以進入市場的性/價比,可說是任重而道遠,必須從基礎材料和基本理論上有重大突破,才可能進入汽車市場;
(6)電動輪已成為國外電力驅動技術的重要發展趨勢,並已在軍用越野車上得到實際應用,證實它在技術/經濟上的重要優勢,我國雖也有不少單位研發,但始終未進入「863」計劃,技術進步緩慢,因此有必要奮起直追,盡快掌握這一先進的電驅動技術。
⑹ 新能源汽車發展的方向有哪些
環保是現在發展的重點,那麼在人們選擇出行工具的時候,新能源汽車就已經成為了新選擇,也有越來越多的人傾向於電動汽車,目前新能源汽車,最大的優勢就是開車不受限,全國不限號,購買新能源車免購置稅、享受補貼政策等一系列措施,那麼新能源汽車未來發展方向是什麼呢?一起來跟小編看看吧。
新能源汽車未來發展方向:兩極分化明顯
得益於我國環保事業的縱深挺進,並且開局就迎來了政策補貼,所以新能源車企發展事半功倍。如今,補貼退坡,准入門檻浮動,新能源汽車需求更多卻也有了更嚴格的要求,這無疑是對相關車企的質量和技術等系統「硬體」的新一輪考驗。
新能源汽車未來發展方向:電動化標簽日漸清晰
這從我國純電動汽車的市場份額變化中可以初窺端倪,從不到2%到超越傳統燃油汽車,業界預計也就是十幾年間會發生的變化。如果從環保和耗能的角度來看,只要跨過成本障礙,建起完整的運維體系,純電驅動的未來藍圖能夠實現的可能性將大幅提升。
新能源汽車未來發展方向:智能化聯網的未來
新能源汽車未來發展方向:產業鏈主支線並起
綜上所述,新能源汽車發展的路徑必然不會是一條主幹通到底。眾所周知,新能源汽車產業鏈大的板塊主要是整車製造、電池體系以及售後運維。如今,發展需求帶來的產業鏈延伸為新能源汽車產業添加了眾多分支。
新能源汽車未來發展方向:有望躍居國際舞台
截至目前,我國汽車工業在出口方面陷入瓶頸,新能源汽車銷量卻呈現漲勢。一般的新能源出口均價低,出口量大,檔次較高的純電動客車出口規模小,但是單價高。也就是說,不論是技術工藝較好的還是平常的都自有其出口優勢。而且,新能源車企在對外合作上也非常主動,或是研發合作,或是資本合作,或是貿易合作,不一而足。
⑺ 我國純電動汽車的發展目標是什麼
技術成熟程度、使用便利性及經濟性是影響電動汽車普及的主要因素,電動汽車必須在這三個方面具有與燃油汽車相比較的核心競爭力,這樣才能讓電動汽車大規模應用和量產。
⑻ 新能源汽車產業規劃\"6個關注點\"!自動駕駛實現分兩步走
繼10月9日國務院常務會議通過《新能源汽車產業發展規劃(2021-2035)》(以下簡稱《規劃》)後,昨晚(11月2日),央視新聞也正式解析了上述規劃,這也意味著這一規劃正式進入實施階段。
華為自研的鴻蒙操作系統(HarmonyOS)或許也將在這18家車企的後續產品中率先使用。鴻蒙研發之初的定位就是"全場景分布式OS",並不僅僅是為手機而設計的操作系統,更是可用於工業的一套系統,跟5G同樣具有低時延的特性,同時兼顧安全性,特別適合用於汽車和各大IoT平台。
國家新能源汽車創新工程項目專家組組長王秉剛表示,《規劃》的推出,進一步表明了國家推動新能源汽車產業發展的決心,明確了未來15年產業發展的方向,也強調了產業發展的融合趨勢,更有利於凝聚行業共識,推動產業高質量發展。
本文來源於汽車之家車家號作者,不代表汽車之家的觀點立場。
⑼ 我國新能源汽車發展的規劃
行業發展前景預測
——「十四五」期間中國新能源汽車行業將進一步發展
在我國「十四五」規劃中明確提到聚焦新能源汽車等戰略性新興產業、在氫能等產業組織實施未來產業孵化與加速計劃等。2020年11月份,在國務院辦公廳印發的《新能源汽車產業發展規劃(2021-2035年)》明確了未來新能源汽車的發展目標,提出到2025年純電動乘用車新車平均電耗降至12.0千瓦時/百公里;
到2035年純電動汽車成為新銷售車輛的主流,公共領域用車全面電動化。在政策的推動下,未來我國新能源汽車的發展前景較好。
——更多數據請參考前瞻產業研究院發布的《中國新能源汽車行業市場前瞻與投資戰略規劃分析報告》。