新能源汽車電池冷卻器
Ⅰ 動力電池冷卻系統的工作原理和作用是什麼
一、動力電池冷卻系統的工作原理
新能源汽車冷卻系統包括動力系統冷卻和供電系統冷卻。電源系統的冷卻是對驅動電機、控制器、DC/DC等相關部件進行冷卻,而電源系統的冷卻是對動力電池和車輛充電器進行冷卻。動力電池在充放電過程中,化學能轉化為電能,然後電能轉化為動能。由於能量的轉換會產生熱能,當熱能不能及時釋放時,動力電池周圍的溫度會升高,從而影響鋰電池的物理穩定性,降低其性能。
動力電池冷卻系統採用汽車電池組的熱管理模式來調節動力電池的溫度。它在電池溫度低時提供熱量,在電池溫度高時冷卻,使動力電池處於最佳工作狀態,從而提高動力電池的性能。換句話說,動力電池冷卻系統的控制水平決定了動力電池的性能。
Ⅱ 新能源汽車有沒有冷卻系統,需不需要更換冷凍液
因為新能源汽車電池包和電機組需要散熱,所以有冷卻液,也是需要定期更換。
Ⅲ 純電動汽車,水冷凍的電池,冷卻系統的優缺點
水冷動力電池冷卻系統,起優點電池平均能量效率高,電池模塊結構緊湊,冷卻效果優異,能集成電池加熱組件,解決了再環境溫度很低的情況下,加熱電池的問題,缺點系統復雜多了,很多部件,如電子水泵,閥、低溫水箱,成本增加
Ⅳ 新能源汽車動力電池冷卻系統有幾種冷卻方式
大致分為4種方式:
1自然冷卻
2風冷冷卻
3水冷冷卻
4空調冷卻劑冷卻。
Ⅳ 新能源汽車的電池能用到一年嗎
不過並不是電池完全衰減了才報廢的,一般是電池容量衰減到初始值的80%以下,就不能在電動汽車上用了,要麼梯次利用,要麼拆解利用。電池是新能源電動汽車最關鍵、最昂貴的部件。在許多方面,電動汽車在機械上比傳統動力汽車簡單。與汽油發動機相比,電動汽車的運動部件要少得多,電動汽車只使用單速變速器,現在的新能源汽車電池基本上都是三元鋰電池或者磷酸鐵鋰電池。後者的壽命一般更長些。不過這兩種都可以稱作「鋰電池」,以下就以鋰電池來通稱。
由於電芯的一致性影響,整包循環壽命一般會打個八折,也就是1200-1600周(雖然在電池包中不是滿充滿放,但是實際應用過程中,一般還有快充、偏低溫充電,或高溫使用的工況。
Ⅵ 新能源汽車熱管理架構主要包括哪些
除了涵蓋傳統車身空調系統,新能源汽車熱管理系統還包括電池熱管理系統、電機電控管理系統、減速器冷卻系統等。涉及零部件包括控制部件(電子膨脹閥、水閥等)、換熱部件(冷卻板、冷卻器、油冷器等)與驅動部件(電子水泵與油泵等)。
其中,電池冷卻器、電子膨脹閥、冷卻板、PTC加熱器等新部件的增加,帶動新能源整車熱管理系統的價值量明顯提升。
Ⅶ 純電動轎車里邊有冷卻系統嗎
純電動汽車的動力電池的冷卻,新能源汽車動力電池作為汽車的動力源,其充電、放電的發熱會一直存在。動力電池的性能和電池溫度密切相關。那麼接下來小編就給大家介紹一下純電動汽車的動力電池的冷卻系統。
在高端電動汽車中動力電池內部有與空調系統連通的製冷劑循環迴路。BMW X1 xDrive 25Le(F49 PHEV)插電式混動車型動力電池冷卻系統
動力電池單元直接通過冷卻液進行冷卻,冷卻液循環迴路與製冷劑循環迴路通過冷卻液製冷劑熱交換器(即冷卻單元)連接。因此,空調系統製冷劑循環迴路由兩個並聯支路構成。一個用於冷卻車內空間,一個用於冷卻動力電池單元。兩個支路各有一個膨脹和截止組合閥,兩個相互獨立的冷卻系統。
冷卻工作原理:
電動冷卻液泵通過冷卻液循環迴路輸送冷卻液。只要冷卻液的溫度低於電池模塊,僅利用冷卻液的循環流動便可冷卻電池模塊。冷卻液溫度上升,不足以使電池模塊的溫度保持在預期范圍內。
因此必須要降低冷卻液的溫度,需藉助冷卻液製冷劑熱交換器(即冷卻單元)。這是介於動力電池冷卻液循環迴路與空調系統製冷劑循環迴路之間的介面。
如冷卻單元上的膨脹和截止組合閥使用電氣方式啟用並打開,液態製冷劑將流入冷卻單元並蒸發。這樣可吸收環境空氣熱量,因此也是一種流經冷卻液循環迴路的冷卻液。電動空調壓縮機(EKK)再次壓縮製冷劑並輸送至電容器,製冷劑在此重新變為液體狀態。因此製冷劑可再次吸收熱量。
為了確保冷卻液通道排出電池模塊熱量,必須以均勻分布的作用力將冷卻通道整個平面壓到電池模塊上。通過嵌入冷卻液通道的彈簧條產生該壓緊力。針對電池模塊幾何形狀和下半部分殼體對彈簧條進行了相應調節。
熱交換器的彈簧條支撐在高電壓蓄電池單元的殼體下部件上,從而將冷卻液通道壓到電池模塊上。
動力電池單元冷卻液循環迴路內的電動冷卻液泵額定功率為50W。電動冷卻液泵利用冷卻單元上的支架固定,其安裝於動力電池的右後角。
Ⅷ 新能源汽車電池冷卻系統是什麼
汽車新能源汽車動力電池作為汽車的動力源,其充電、放電的發熱會一直存在。動力電池的性能和電池溫度密切相關。為了盡可能延長動力電池的使用壽命並獲得最大功率,需在規定溫度范圍內使用蓄電池。原則上在-40℃至+55℃范圍內,實際電池溫度動力電池單元處於可運行狀態。因此目前新能源的動力電池單元都裝有冷卻裝置。
動力電池冷卻系統有空調循環冷卻式、水冷式和風冷式。1.空調循環冷卻式
在高端電動汽車中動力電池內部有與空調系統連通的製冷劑循環迴路。插電式混動車型動力電池冷卻系統如下圖所示。
動力電池單元直接通過冷卻液進行冷卻,冷卻液循環迴路與製冷劑循環迴路通過冷卻液製冷劑熱交換器即冷卻單元連接。因此,空調系統製冷劑循環迴路由兩個並聯支路構成。一個用於冷卻車內空間,一個用於冷卻動力電池單元。兩個支路各有一個膨脹和截止組合閥,兩個相互獨立的冷卻系統圖示如下圖所示。冷卻工作原理:
電動冷卻液泵通過冷卻液循環迴路輸送冷卻液。只要冷卻液的溫度低於電池模塊,僅利用冷卻液的循環流動便可冷卻電池模塊。冷卻液溫度上升,不足以使電池模塊的溫度保持在預期范圍內。
因此必須要降低冷卻液的溫度,需藉助冷卻液製冷劑熱交換器即冷卻單元。這是介於動力電池冷卻液循環迴路與空調系統製冷劑循環迴路之間的介面。
如冷卻單元上的膨脹和截止組合閥使用電氣方式啟用並打開,液態製冷劑將流入冷卻單元並蒸發。這樣可吸收環境空氣熱量,因此也是一種流經冷卻液循環迴路的冷卻液。電動空調壓縮機再次壓縮製冷劑並輸送至電容器,製冷劑在此重新變為液體狀態。因此製冷劑可再次吸收熱量。為了確保冷卻液通道排出電池模塊熱量,必須以均勻分布的作用力將冷卻通道整個平面壓到電池模塊上。通過嵌入冷卻液通道的彈簧條產生該壓緊力。針對電池模塊幾何形狀和下半部分殼體對彈簧條進行了相應調節。
Ⅸ 新能源汽車的電池冷卻系統技術有哪些分別有什麼特點
一、風冷電池技術
以空氣為介質冷卻電池的方法稱為空氣冷卻技術。主要原理是利用流動換熱的方法來達到冷卻的目的。冷卻技術具有設備簡單、維護成本低、製造成本低的特點,因此廣泛應用於各種動力電池和電子設備電池的保護裝置中。這種技術雖然成本低,應用方便,但受導熱系統和空氣比熱容的影響,因此在實際應用過程中冷卻效果相對較差。目前,風冷電池技術的研究方向主要集中在三個方面風量、流道、電池空間規劃。
四、相變材料冷卻電池技術
相變材料基於相變吸熱原理降低電池組的工作溫度。它具有無毒無害、熱穩定性好、成本低、使用方便的技術特點。相變材料冷卻方式不需要通道設備和電氣設備,系統安全性很高。目前應用廣泛且成熟的相變材料主要有改性成本脫蠟、水和鹽、有機酸化合物等。