電動汽車動力電池發展歷史
Ⅰ 電動汽車電池的發展
純電動汽車用蓄電池的研究主要集中在鋰電池,其次為鉛酸電池、鎳氫電池和鈉電池等。從世界范圍內的專利申請的總量來看,日本擁有的純電動汽車用蓄電池及其管理系統相關專利申請數量最多。從日本國內的專利申請量來看,超過90%的專利申請也來自日本申請人。無論是從世界專利申請的擁有量角度,還是從日本專利申請中日本申請人所佔的份額角度,日本在純電動汽車用蓄電池及其管理系統領域都是實力最強者,掌控著絕大部分專利技術。
作為世界上最大的汽車生產和消費國,美國純電動汽車用蓄電池的研究主要集中在鋰電池,鋰電池相關專利數量占動力電池專利數量的70%以上,其次為鉛酸電池、鎳氫電池、空氣電池和鈉電池等。從世界范圍內的專利申請的總量來看,截至2010年6月,美國的純電動汽車用蓄電池及其管理系統相關專利申請數量位於日本之後,排名第二。從美國國內的專利申請量來看,在和純電動汽車用蓄電池及其管理系統有關的專利申請中,來自日本申請人的專利最多,接近總量的60%,而來自美國申請人的專利申請數量次於日本。 純電動汽車用蓄電池的研究主要集中在鋰電池,其次為鉛酸電池、鎳氫電池、鈉電池和空氣電池等。從世界范圍內的專利申請的總量來看,截至2010年6月,德國的純電動汽車用蓄電池及其管理系統相關專利申請數量居世界排名第6位,與排名首位的日本專利數量相差很大,僅占日本申請量的11%。從德國國內的專利申請量來看,德國申請人持有的專利約占總量的43%,高於排名第二的日本。在全球范圍來看,德國在純電動汽車用蓄電池及其管理系統領域的技術實力遠不及日本,但是在本國范圍內,德國擁有較強的技術優勢,專利擁有量高於日本。
歐洲知名咨詢公司羅蘭貝格於2013年6月7日在上海發布的一份報告稱,全球電動汽車的製造前景不甚樂觀,但中國除外。
該報告通過將七大主要汽車製造國德國、法國、義大利、美國、日本、中國、韓國的電動汽車市場加以比較,從技術、產業發展以及市場發展等方面詳細分析各國電動汽車行業發展現狀。
報告指出,生產電動汽車帶來的利潤空間遠遠不及生產傳統汽車,這種成本偏高而獲益有限的情況,加上預期未來幾年內油價趨於穩定,使電動汽車的成本劣勢愈加明顯。但在上述七國中,只有中國對電動汽車產業的投入沒有下降。羅蘭貝格合夥人沈軍表示,中國的電動汽車市場從長期來看仍會保持向上發展的勢頭 中日韓三國繼續占據主要市場,2012年三國電池市場佔有率分別為37%,28%和33%,其中中國所佔比率最大,在一定程度上助推了電動汽車的發展。 電池快充壽命衰減驚人盲目建站風險大私人購買新能源汽車補貼標准出台後,部分試點城市的「再補貼」政策也隨即出台,新能源汽車消費正逐步啟動。面對廣闊的市場前景,國家電網、南方電網、中海油、中石化等巨頭紛紛跑馬圈地,各地掀起一股興建充電站的風潮。上海漕溪、深圳龍崗、成都石羊、唐山南湖、延安、鄭州、南寧等地已經建成、在建或近期將開建大量的充電站,其中上海計劃在三年內達到5000個充電樁的規模;長春計劃三年內建成15個充電站和5000個充電樁……電池尺寸、充電介面是否統一?電池質量能否過關?快速充電對電池的損害究竟有多大?等一系列問題開始暴露出來。
當前我國電動汽車電池技術發展很快,但存在兩個明顯缺點。電動汽車電池的第一個缺點就是缺乏深層次技術,比如電池的化學問題、物理問題、溫度問題、結構問題等,在這些方面我們研發還不夠,沒有能夠建立數學模型把這些問題搞清楚。另一個缺點是缺乏評價體系,雖然現在我國部分電動車運行很好,但缺乏好的評價系統。比如電池的安全性怎麼樣,在高溫、低溫環境下能不能正常工作,這些都沒有一個好的評價。
在中國這樣一個人口稠密的國家,電動汽車市場潛力巨大,與電動汽車發達國家相比,還有不小差距。所以我們必須追上發達國家電動汽車研發的步伐,從電源、集成電路、電源板塊等方面進行認真研發,齊心協力把電池產業做大做強。我國汽車用動力電池已開始由研發進入到產業化階段,並出現了加快發展的勢頭。電動汽車動力電池研發產品的主要性能已居國際先進水平,但需要解決一些薄弱環節。目前國產車用動力電池已顯示出了較明顯的成本優勢,部分企業能量型動力電池成本僅是日、美企業的一半左右,這就意味著,我國電動汽車的商業化有條件加速推進,並以成本優勢實現大規模出口。 全球動力電池產業目前面臨技術制約和成本制約,只有當動力電池性能得到改善、成本大幅降低、規模化應用之後,才能帶動其他較為成熟的環節的大力發展。因此動力電池是電動汽車產業鏈中最具投資價值的環節,最有可能獲得超額收益,其他如電機和電控系統環節有較為成熟技術和市場基礎,競爭者眾多,可能只能獲得平均收益。
Ⅱ 新能源汽車的動力電池總共發展了幾代
現在動力蓄電池主要就分成兩大塊,一個是三元鋰的,還有一種就是比亞迪的這個刀片電池。
Ⅲ 電動汽車發展經歷了哪幾個黃金階段
第一階段:電動汽車份額在5%以下,可將其定義為向傳統汽車學習和電動汽車創新階段。此時電動汽車一定要向傳統車學習,對傳統車保持敬畏,一點一點地滲透。不要動輒談顛覆,顛覆是結果, 但對目前來說,更重要的是研究達到這一目標的進程方案。
第二階段:電動汽車份額達到5%至20%,是電動汽車向傳統汽車細分市場替代的階段。這一階段有滲透,但單靠滲透,做不到20%,可能做到10%就做不動。
第三階段:電動汽車份額達到20%至40%,電動車與傳統汽車並行階段。在這一階段,傳統車仍為主流,但要在一個個細分市場加速取代傳統汽車。
第四個階段:電動汽車份額達到50%以上,即智能化電動汽車全面替代傳統汽車市場的階段。
Ⅳ 新能源汽車的歷史發展
中國新能源汽車產業始於21世紀初。2001年,新能源汽車研究項目被列入國家「十五」期間的「863」重大科技課題,並規劃了以汽油車為起點,向氫動力車目標挺進的戰略。「十一五」以來,我國提出「節能和新能源汽車」戰略,政府高度關注新能源汽車的研發和產業化。
2008年,新能源汽車在國內已呈全面出擊之勢。2008年成為我國「新能源汽車元年」。2008年1-12月新能源汽車的銷量增長主要是乘用車的增長,1-12月新能源乘用車銷售899台,同比增長117%,而商用車的新能源車共銷售1536台,1-12月同比下滑17%。
2009年,在密集的扶持政策出台背景下,我國新能源汽車駛入快速發展軌道。雖然新能源汽車在中國汽車市場的比重依然微乎其微,但它在中國商用車市場上的增長潛力已開始釋放。2009年1-11月,新能源乘用車銷量同比下降61.96%,至310輛。2009年1-11月,新能源商用車——主要是液化石油氣客車、液化天然氣客車、混合動力客車等——銷量同比增長178.98%,至4034輛。相比在乘用車市場的冷遇,「新能源汽車」在中國商用車市場已開始迅猛增長。
2010年,我國正加大對新能源汽車的扶持力度,2010年6月1日起,國家在上海、長春、深圳、杭州、合肥等5個城市啟動私人購買新能源汽車補貼試點工作。2010年7月,國家將十城千輛節能與新能源汽車示範推廣試點城市由20個增至25個。選擇5個城市進行對私人購買節能與新能源汽車給予補貼試點。新能源汽車正進入全面政策扶持階段。
Ⅳ 電動汽車的發展方向是哪裡電動汽車的電池技術會怎樣進步
前瞻產業研究院《中國電動汽車行業市場需求預測與投資戰略規劃分析報告》
上世紀70年代全球三次石油危機爆發後,各跨國汽車公司先後開始研發各種類型的電動汽車。我國經過「八五」、「九五」、「十五」三個五年計劃,在研發電動汽車的專項上投入了大量的人力、物力和財力,並取得了一系列科研成果,但是,迄今為止,這些科研成果真正能轉化為產品,並實現產業化生產的項目並不多。國外大汽車公司投入遠比我國更多的資金和人力,已投入批量生產的電動汽車產品也寥寥無幾。隨著全球能源危機的不斷加深,石油資源的日趨枯竭以及大氣污染、全球氣溫上升的危害加劇,各國政府及汽車企業普遍認識到節能和減排是未來汽車技術發展的主攻方向,發展電動汽車將是解決這二個技術難點的最佳途徑。下面將為您介紹電動汽車的現狀與發展趨勢。
一、電動汽車的現狀
現代電動汽車一般可分為三類:純電動汽車(BEV)、混合動力汽車(HEV)、燃料電池電動汽車(FCEV)。但是近幾年在傳統混合動力汽車的基礎上,又派生出一種插電式(Plug-In)混合動力汽車,簡稱PHEV。本文將電動汽車技術研發的若干問題和趨勢,作簡要的介紹和評述。
1、純電動汽車(BEV)
純電動汽車是指完全由動力蓄電池提供電力驅動的電動汽車,雖然它已有134年的悠久歷史,但一直僅限於某些特定范圍內應用,市場較小。主要原因是由於各種類別的蓄電池,普遍存在價格高、壽命短、外形尺寸和重量大、充電時間長等嚴重缺點。目前採用的鉛酸電池、鎳氫電池和鋰離子電池,它們已達到的實際性能指標和市場平均價格,如表1所示。根據實際裝車時的循環壽命和市場價格,可估算出電動汽車從各種動力電池上每取出1kWh電能所必須付出的費用。計算時,假設電池最高可充電荷電狀態(SOC)為0.9,放電SOC為0.2,即實際可用的電池容量僅占總容量的70%;由電網供電價為0.5元/kWh,電池的平均充放電效率為0.75。
從表1的粗略計算中可知,雖然從電網取電僅需
0.5元/kWh,但充入電池,再從電池取出,鉛酸電池每提供1kWh電能,價格為3.05元左右,其中2.38元為電池折舊費,0.67元為電網供電費,而從鎳氫電池中每提供1kWh電能,費用為9.6元,鋰離子電池為10.2元,即後二種先進電池供電成本是鉛酸電池的三倍多。
目前國內市場上用柴油機發電,價格大致為3元/kWh,若用汽油機發電,供電價格估計為4元/kWh,即從鉛酸電機提供電能的價格大致和柴油機發電價格相等,僅僅從取得能量的成本來考慮,採用鉛酸電池比汽油機驅動有一定價格優勢,但是由於它太過笨重,充電時間又長,因此只被廣泛用於車速小於50km/h
的各種場地車、高爾夫球車、垃圾車、叉車以及電動自行車上。實踐證實鉛酸電池在這一低端產品市場上有較強的競爭力和實用性。
鎳氫電池的主要優點是相對壽命較長,但是由於鎳金屬占其成本的60%,導致鎳氫電池價格居高不下。鋰離子電池技術發展很快,近10年來,其比能量由
100Wh/kg增加到180Wh/kg,比功率可達2000W/kg,循環壽命達1000次以上,工作溫度范圍達-40~55℃。美國USABC在
2002年制定的鋰離子電池技術發展目標如表2所示。
近年由於磷酸鐵鋰離子電池的研發有重大突破,又大大提高了電池的安全性。目前已有許多發達國家將鋰離子電池作為電動汽車用動力電池的主攻方向。我國擁有鋰資源優勢,鋰電池產量到2004年已佔全球市場的37.1%,預計到2015年以後,鋰離子電池的性/價比有望達到可以和鉛酸電池競爭的水平,而成為未來電動汽車的主要動力電池。
圖1示出了國內外各種純電動車輛數量/性能和價格/性能曲線,以電動自行車為代表的低性能車輛,由於其成本低廉,僅我國在2006年已達到年產2000萬輛,美國通用汽車公司生產的沖擊1號電動跑車,雖然已達到了很高的動力性,但是由於售價高昂,僅生產了區區50輛,由於沒有市場而不得不停產。性能較低的場地車,在我國年產達7000~8000輛左右;天津清源電動車公司生產的微型電動車,最高車速僅50km/h,年產也可以達千輛以上,這可能是目前市場所能接受的純電動車輛性能的上限。上述所有電動車輛均採用鉛酸電池為動力。隨著高性能鋰離子電池的性/價比不斷提升,未來5~10年內,市場上可能會出現最高車速≥100km/h,續駛里程≥250km的高性能純電動汽車。
2、混合動力電動汽車(HEV)
由於完全由動力蓄電池驅動的純電動汽車,其性能/價格比長期以來都遠遠低於傳統的內燃機汽車,難於與傳統汽車相競爭,上個世紀90年代以來各大汽車公司都著手開發混合動力汽車。日本豐田公司在1997年率先向市場推出「先驅者」(Prius)混合動力汽車,並在日本、美國和歐洲各國市場上均獲得較大成功,累計產銷量已超過60萬輛。隨後日本本田、美國福特、通用和歐洲一些大公司,也紛紛向市場推出各種類型的混合動力汽車。
2.1 研製全混合電動汽車的必要性
混合動力電動汽車是指具備兩個以上動力源、而其中有一個可以釋放電能的汽車。混合動力汽車按混合方式不同,可分為串聯式、並聯式和混聯式三種;按混合度(電機功率與內燃機功率之比)的不同,又可分為微混合、輕度混合和全混合三種。其中外掛式皮帶驅動起動/發電(BSG)式是微混合動力汽車的典型結構,其電機功率一般僅2~3kW,依賴發動機的停車斷油功能,可節燃油5~7%;在發動機曲軸後端加裝一個電動/發電型盤式電機(ISG)是輕度混合動力汽車的典型結構;具有純電力驅動功能的可作為全混合或混聯式混合動力汽車的典型。豐田公司的Prius轎車即屬於這類全混合汽車。目前我國若干汽車企業研製的混合動力汽車,大多採用ISG輕度混合或BSG微混合方案,主要是考慮這二種方案的技術難度較小,生產成本也較低。但是根據研究表明,混合動力汽車的節油率幾乎與汽車功率的混合度和汽車的生產成正比上升(如圖2)。因此,從長遠來看,研製全混合電動汽車是一種必然趨勢。
2.2 研發及市場情況
下面分別介紹混合動力乘用車和混合動力公交車的研發及市場情況。
以節油率最佳的豐田Prius汽車為例,在我國實測它與豐田花冠(Corrolla)油耗在不同工況下的對比數據如表3所示。各種工況下的平均節油率為39.6%,平均百公里可節油3.07L。
以97號汽油價格為5元/L計算,每百公里可節省油費15.35元,行駛20萬km也僅省油費3.07萬元,顯然還不足以抵消購置混合動力汽車所增加的費用。據中國汽車工業協會統計,2006年一汽豐田普銳斯(Prius)銷量僅為2152輛,佔全國乘用車總銷量的0.04%。考慮到我國用戶對汽車售價的敏感性,這一銷售業績並不令人驚奇,可以認為在近期,如果沒有政府的大力支持,混合動力乘用車在我國不會有很大的市場。
2.3 城市公交車的使用特點
在我國,城市公交車與私人乘用車的情況有很大的不同,具體歸納為以下三點:
(1)據統計我國城鎮居民日常出門有70%是首選乘坐公交車,我國大部分城市政府都奉行公交車優先的交通政策,我國公交車的年產量和保有量都居世界第一;
(2)我國城市公交車大多由市政府補助公交企業采購,公交車是否符合節油減排要求,將是政府需要考慮的一個重要采購原則;
(3)從技術角度來分析,在城市工況下,公交車頻繁起步、加速、制動和停車,要額外消耗許多燃油。表4列出了在國外四種典型城市工況下,汽車制動消耗能量(油耗)所佔比例,其算數平均值達47.1%。即有近一半的燃油是被汽車頻繁制動所消耗的,這就為混合動力公交車的節油減排留下了相當大的空間。
正是考慮到以上幾個特點,我國至少有7~8家汽車企業將研發、生產混合動力公交車作為研發工作的重點。經過近幾年的開發,雖然已取得了一系列重大成果,但公交車的節油率並未達到預計的要求,一輛總重15.5t,長11m的混合動力公交車,實際油耗大多為33~35L,平均34L/100km,若傳統
11m公交車的平均油耗為40L/100km,則節油率僅15%。
2.4節油率難以進一步提高的原因
分析節油率難以進一步提高的原因主要有二個:
(1)汽車的制動過程十分短暫,一半不超過10s,在短短的幾秒內,電機要求發出很大的電流,才能有效回收制動能量,但是電池的充電倍率只有放電倍率的一半,因此電池不能接受大電流充電。理論上汽車有50~60%的制動能量可回收,實際回收的制動能量<20%,最簡單的改進辦法是加大動力電池容量,例如至少加大容量一倍,回收的制動能量可由20%增加到40%。但這將大大增加整車成本和汽車自重,經濟上可能是得不償失。<
div="">
(2)混合動力公交車若採用停車斷油,甚至滑行時即斷油,可節油10%左右(4L/100km),實際上國產柴油機沒有專門為混合動力汽車設計,一般不允許頻繁的停車斷油,否則供油系和廢氣增壓器都可能損壞,嚴重影響柴油機壽命。其次,停車斷油就必須裝有電動轉向油泵、電動空壓機和電動空調系統,這又會大大增加整車成本和重量,二相權衡,不一定合算,所以近期大多未實現停車斷油功能。因此,目前HEV的開發重點集中在節油降耗的工作上,針對以上問題,科研工作者提出了不同的解決方案,如利用超級電容器的功率密度達鉛酸電池的10倍,具有快速吸收大電流充電的優異特性,在混合動力汽車制動時可以快速吸收能量,大大提高制動能量的回收率,此外它還具有循環壽命長、充放電效率高、耐低溫特好以及免維護等優點。這種方案由於受到超級電容價格昂貴的影響,限制了它在混合動力汽車上的廣泛應用。在進一步降低成本,提高能量密度後,超級電容器最有可能首先在混合動力公交車上得到應用。
3、插電式混合動力汽車
插電式混合動力汽車是最新的一代混合動力汽車類型,近年來受到各國政府、汽車企業和研究機構的普遍關注,國內外專家認為,PHEV有望在幾年後得到廣泛的推廣使用。
據統計,法國城鎮居民80%以上日均駕車里程少於50km,在美國,汽車駕駛者也有60%以上日均行駛里程少於50km,80%以上日均行駛里程少於
90km。PHEV特別適合於一周有5天僅駕車用於上下班,行駛里程50~90km之間的工薪族使用。PHEV是在混合動力汽車上增加了純電動行駛工況,並且加大了動力電池容量,使PHEV採用純電動工況可行駛50~90km,超過這一里程,即必須起動內燃機,採用混合驅動模式。所以PHEV的電池容量一般達5~10kW·h,約是純電動汽車電池容量的30~50%,是一般混合動力汽車電池容量的3~5倍,可以說它是介於混合動力汽車與純電動汽車之間的一種過渡性產品。與傳統的內燃機汽車和一般混合動力汽車(HEV)對比(見表5),PHEV由於更多的依賴動力電池驅動汽車,因此它的燃油經濟性進一步提高,二氧化碳和氮氧化物排放更少。由於動力電池容量的加大,每輛車的售價至少比一般HEV高2000美元。
圖3示出了四種不同類型乘用車,它們的蓄電池容量與汽車價格、燃油消耗及尾氣排放的對比關系。可見隨著蓄電池容量的加大,汽車價格將上升,但是燃油消耗和尾氣排放則下降。因此可以認為,電動汽車是以使用和損耗蓄電池為代價來換取節油、減排的效果,動力電池性/價比的大幅提升將是電動汽車能否迅速推廣使用的關鍵所在。
一般HEV動力電池SOC僅在較小范圍內波動(例如±2%~3%)因此循環壽命次數很長,而PHEV的動力電池SOC必須在很大的范圍內波動(例如±40%),屬於深充深放,因此循環工作壽命短得多,和純電動汽車(PEV)相似。目前在PHEV上都採用先進的鋰離子電池,由表1可知,鋰離子電池每放出1kWh電能,能耗費為10.2元,相當於內燃每
kWh能耗費用的3倍。隨著全球石油價格不斷上升,燃油內燃機的能耗費用也將不斷上升,而鋰離子電池隨著技術進步和產量的擴大,其能耗費用將不斷下降(如圖4所示),二者可能在2015至2020年內達到平衡點。因此PHEV有望在10年內得到大面積推廣使用。
4、燃料電池電動汽車
早在1839年,英國人格羅孚就提出了氫和氧反應發電的原理。20世紀60年代,研發出了液氫和液氧發電的燃料電池,由美國UTC公司首先用於航天和軍事用途。近20年來,由於石油危機和大氣污染日趨嚴重,以質子交換膜式為代表的燃料電池技術,受到世界各國普遍重視。各大跨國汽車公司紛紛投入巨資,研發出了各種類型的燃料電池電動汽車(FCEV)。
4.1質子交換膜燃料電池(PEMFC)主要優點
(1)其排放生成物是水及水蒸汽,為零污染;
(2)能量轉換效率可高達60~70%;
(3)無機械振動、低雜訊、低熱輻射;
(4)宇宙質量中有75%是氫,地球上氫也幾乎是無處不在。氫還是化學元素中質量最輕、導熱性和燃燒性最好的元素;
(5)氫的熱值很高,1kg氫和3.8L汽油的熱值相當。
4.2燃料電池電動汽車存在的技術、經濟問題
在我國,國家科技部將研發燃料電池客車和燃料電池轎車列為「十五」和「十一五」計劃「863」重大科技項目。並已取得一系列重大科技成果,但是在多年科研實踐中,也暴露出一些技術、經濟問題:
(1)燃料電池發動機的耐久性壽命短
一般僅1000~1200小時(國外達2200小時),燃料電池汽車行駛4~5萬km,功率即下降~40%,和傳統內燃機可普遍行駛50萬km以上相比,差距很大;
(2)燃料電池發動機的製造成本居高不下
一般估計3萬元/kW(國外成本約3000美元/kW),與傳統內燃機僅200~350元/kW相比,差距巨大。由於其中如質子交換膜、炭紙、鉑金屬催化劑、高純度石墨粉、氫回收泵、增壓空氣泵等關鍵部件均依靠進口,所以與國外相比,並沒有成本優勢;
(3)燃料電池發動機對工作環境的適應性很差
國產可在0~40℃氣溫下工作,低於0℃有結冰問題,高於40℃過熱不能正常工作;此外對空氣中的粉塵、一氧化碳、硫化物等都十分敏感,鉑催化劑極易污染中毒失效;
(4)燃料電池汽車的使用成本過於高昂
例如高純度(99.999%)高壓氫(>200大巴)售價約80~100元/kg。按1kg氫可發10kW·h電能計算,僅燃料費即約為10元
/kW·h,按燃料電池發動機工作壽命1000小時計算,折舊費為30元/kWh。所以總的動力成本達40元/kW·h。與表1對照可知,至少在目前,由燃料電池發動機提供1kWh電能的成本遠高於各種動力電池,這從一個側面反映了作為汽車動力源,燃料電池汽車還有相當的距離。
4.3目前燃料電池電動汽車的研究課題
盡管存在如此多的問題,但是燃料電池仍然是人類迄今為止,發明的最清潔、安靜又可無限再生的能源,值得我們為實現燃料電池電動汽車的產業化,付出更大的努力。
為此建議從以下幾個方面進行工作:
(1)以更為創新的思維,對燃料電池的基本理論和基礎材料進行深入研究,例如努力探尋非鉑金屬催化劑;努力研製抗電腐蝕金屬雙極板和耐高溫(>110℃)高機械強度質子交換膜等;
(2)努力實現如炭紙、增壓空氣泵等關鍵零部件的國產化,以降低整機成本;
(3)進一步提高整機的優化集成技術,著力提高整機的耐候性(高、低氣溫變化)、抗大氣污染能力和耐電負荷急劇變化能力等。
5、電機及電動車輪的分類
電動汽車驅動電機是所有電動汽車必不可少的關鍵部件。目前使用較多的有直流有刷、永磁無刷、交流感應和開關磁阻等四種電機。
美國和德國開發的電動汽車大多採用交流感應電機,主要優點是價格較低、效率高、重量輕,但啟動轉矩小。日本研製的電動汽車幾乎全部使用永磁無刷電機,其主要優點是效率可以比交流感應電機高6個百分點,但價格較貴,永磁材料一般僅耐熱120℃以下。開關磁阻電機結構較新,優點是結構簡單、可靠、成本較低、起動性能好,沒有大的沖擊電流,它兼有交流感應電機變頻調速和直流電機調速的優點,缺點是雜訊較大,但仍有一定改進餘地。表6列出四類電機比較。
顯然表6中四種電機各有優缺點,但是對於電動汽車而言,由於電能是由各類電池提供,價格昂貴而彌足珍貴,所以使用相對效率最高的永磁無刷電機是較為合理的,它已被廣泛用於功率小於100kW的現代電動汽車上。
此外,在國外已有越來越多的電動汽車採用性能先進的電動輪(又稱輪轂電機),它用電機(多為永磁無刷式)直接驅動車輪,因此無傳統汽車的變速箱、傳動軸、驅動橋等復雜的機械傳動部件,汽車結構大大簡化。但是它要求電機在低轉速下有很大的扭矩,特別是對於軍用越野車,要求電機基點轉速∶最高轉速=1∶10(見圖5)。近幾年,美、英、法、德等國紛紛將電動輪技術應用於軍用越野車和輕型坦克上,並取得了重大成果。例如美海軍陸戰隊在「悍馬」基礎上研製出串聯式「影子」新型混合動力越野車,採用了電動輪技術,其結構及主要技術參數如表7所示。與傳統「悍馬」車對比試驗,在同樣偵察試驗條件下,「悍馬」耗油472kg,而「影子」僅耗油200kg;同一越野路段,「悍馬」耗時32分鍾跑完,而「影子」僅耗時13分50秒,此外它還具有在純電動模式下,汽車靜音、無「熱痕跡」等優點。如此優異的性能,據聞美軍已決定停產傳統「悍馬」車,全部改產新型混合動力電動輪驅動的「影子」型軍車。這一重要發展趨勢,應引起高度關注。
二、電動汽車發展趨勢
綜上所述,可以從技術/經濟分析出發,對電動汽車技術的現狀和未來作如下結論:
(1)在目前國內市場價格的基礎上,可粗略計算出各種提供電能技術的價格比。即電網供電∶柴油機供電∶鉛酸電池供電∶鎳氫電池供電∶鋰離子電池供電∶燃料電池供電=1∶6∶6∶19.2∶20.4∶80。這從一個側面反映了各種供電方式距離電動汽車市場的遠近。當然,隨著石油價格的上升、電池技術的進步,這些比例關系將發生很大的變化;
(2)由於鉛酸電池的供電成本大體和柴油機供電相等,因此它仍然是低端電動車市場的主要動力電池。磷酸鋰離子電池技術進步較快,它最有可能成為鉛酸電池的競爭對手,率先成為高端電動車市場的主要動力電池;
(3)由於混合動力汽車僅需裝用純電動汽車1/10的動力電池容量,整車有較為接近市場的性/價比,因此它仍將是近期實現產業化的主要電動汽車種類。考慮到我國國情,目前仍應大力推廣使用混合動力大客車,進一步降低製造成本,減少油耗和排放;
(4)在鋰離子電池性/價比進一步提升後,外接充電式混合動力汽車(PHEV)有望成為理想的上班族乘用車,它可大幅度減少油耗和降低排放,但是由於較高的價格,它可能首先在發達國家得到推廣應用;
(5)燃料電池雖然是理想的清潔能源,但是目前它的性/價比太低,要達到可以進入市場的性/價比,可說是任重而道遠,必須從基礎材料和基本理論上有重大突破,才可能進入汽車市場;
(6)電動輪已成為國外電力驅動技術的重要發展趨勢,並已在軍用越野車上得到實際應用,證實它在技術/經濟上的重要優勢,我國雖也有不少單位研發,但始終未進入「863」計劃,技術進步緩慢,因此有必要奮起直追,盡快掌握這一先進的電驅動技術。
Ⅵ 電動車的發展史
電動車的歷史比我們現在最常見的內燃機驅動的汽車要早。直流電機之父匈牙利的發明家、工程師阿紐什·耶德利克Jedlik Ányos最早於1828年在實驗室試驗了電磁轉動的行動裝置。美國人托馬斯·達文波特Thomas Davenport於1834年製造出第一輛直流電機驅動的電動車。1837年,托馬斯因此獲得美國電機行業的第一個專利。在1832年至1838年之間,蘇格蘭人羅伯特·安德森Robert Anderson發明了電驅動的馬車,這是一輛使用不能充電的初級電池驅動的車輛。1838年蘇格蘭人羅伯特·戴維森Robert Davidson發明了電驅動的火車。今天在路面上依然行駛的有軌電車是1840年在英國出現的專利。
電池電動車的歷史。世界上第一輛電動汽車於1881年誕生,發明人為法國工程師古斯塔夫·特魯夫,這是一輛用鉛酸電池為動力的三輪車;而在1873年,由英國人羅伯特·戴維森用一次電池作動力發明的電動汽車,並沒有列入國際的確認范圍。後來就出現了鉛酸電池、鎳鎘電池、鎳氫電池、鋰離子電池、燃料電池作為電力。 1860——1920階段:隨著蓄電池技術的發展,電動車的運用在19世紀的下半葉在歐美得到了較為廣泛的運用。1859年法國偉大的物理學家、發明家噶斯頓·Plante發明了可充電的鉛酸電池。
19世紀末期到1920,在早期的汽車消費市場上電動車比內燃機驅動車輛有著更多優勢:無氣味、無震盪、無噪音、不用換擋和價格低廉,這形成了以蒸汽、電動和內燃機三分天下汽車市場。 1920 ——1990階段:隨著美國德州石油的開發和內燃機技術提高,電動車在1920年之後漸漸地失去了優勢。汽車市場逐步給內燃機驅動的汽車所取代。只有在少數城市保留著很少的有軌電車和無軌電車以及很有限的電瓶車(使用鉛酸電池組,被使用在高爾夫球場、鏟車等領域)。
電動車的發展從此停滯了大半個世紀。隨著石油資源的滾滾流向市場,人們幾乎忘記還有電動車的存在。相對運用在電動車上的技術:電驅動、電池材料、動力電池組、電池管理等等也無法得到發展或運用。 電動車作為綠色朝陽產業,在中國發展已有十年之久。在電動自行車方面,2010年底,中國電動自行車已經達到1.2億輛,而且以每年30%的速度增長。
從能耗角度看,電動自行車只有摩托車的八分之一、小轎車的十二分之一。
從佔有空間看,一輛電動自行車佔有的空間只有一般私家車的二十分之一。
從發展趨勢上看,電動自行車行業市場前景依然看好。
電動自行車曾以其價廉、便捷、環保的功能優勢,受到城市中低收入階層青睞。中國的電動自行車從研製開發到上世紀九十年代中期小批量投放市場,至2012年以來的生產和銷售,一直呈逐年大幅增長的勢頭。由於需求旺盛,近幾年中國電動自行車市場一直保持跨越式增長。
數據顯示,1998年全國產量僅為5.4萬輛,2002年為158萬輛,到了2003年中國電動自行車產量達到400多萬輛,躍居世界第一,1998-2004年年均增長速度超過120%。2009年產量達到了2369萬輛,同比增長8.2%。相比1998年增長了437倍,發展速度相當驚人。上述統計年份電動自行車產量年平均增長率為174%左右。
根據行業預測,到2012年,電動自行車市場規模將達到1000億元,而僅電動車用蓄電池的市場潛力就超過500億元。而在2011年3月18日,四部委聯合下發了《關於加強電動自行車管理的通知》,但最終淪為「一紙空文」。意味著,電動車行業在長期趨好的環境下正面臨巨大的市場生存壓力,政策限制將成為眾多企業生存懸而未決的一把利劍;而外部環境,國際經濟環境疲軟,恢復乏力,也使得電動車的出口紅利將大打折扣。
而在電動汽車方面,《節能和新能源汽車產業發展規劃》已經明確上報國務院,《規劃》被提升到國家戰略高度,旨在布置汽車產業新局。作為國家確定的七大戰略性新興產業之一,新能源汽車在未來10年計劃投資額將達1000億元,銷量規模鎖定世界第一。
到2020年,新能源汽車實現產業化,節能與新能源汽車及關鍵零部件技術達到國際先進水平,純電動汽車和插電式混合動力汽車市場保有量達到500萬輛。分析預測,從2012年到2015年間,中國市場電動車銷量年均增速將達到40%左右,其中大部分來自純電動車銷售,到2015年,中國將成為亞洲最大的電動車市場。
Ⅶ 國內新能源汽車發展的歷史
1、交通能源與環境問題是21世紀全球面臨的重大挑戰,對我國尤為嚴峻 目前世界汽車保有量約8億輛,預計到2020年全球汽車保有量將達到12億輛,主要增量來自發展中國家。國際能源機構(IEA)的統計數據表明,2001年全球57%的石油消費在交通領域(其中美國達到67%)。預計到2020年交通用油佔全球石油總消耗的62%以上。美國能源部預測,2020年以後,全球石油需求與常規石油供給之間將出現凈缺口,2050年的供需缺口幾乎相當於2000年世界石油總產量的兩倍。與此同時,交通能源消耗也是造成局部環境污染和全球溫室氣體排放的主要來源之一。為此,全球已達成共識:交通能源轉型勢在必行。近年來,我國汽車業迅猛發展。2005年,我國汽車產、銷量均超過570萬輛,分別居世界第三位和第二位,自主品牌轎車和汽車出口均出現大幅增長。預計2020年前我國將成為世界上最大的汽車製造國和主要的汽車出口國之一。我國目前的汽車人均保有量還很低,2003年每千人汽車保有量僅為美國的2.5%(19輛),大約相當於美國90年前的水平,是世界上汽車市場潛力最大的國家,預計2020年汽車保有量將達到1.3~1.5億輛。但是,當我國剛剛到達汽車社會門檻,車用石油消費在石油總消費中的比例(1/3以下)還大大低於世界平均水平時(1/2以上),我們已經感受到了石油供應的日益緊張。同時,車用石油消耗所產生的空氣污染和CO2排放也正在變成愈來愈嚴重的問題,我國已經成為世界上第二大CO2排放國,由此產生的國際政治和經濟爭端將會愈演愈烈。這充分表明,我國所面臨的石油安全與交通能源問題將來勢更猛、影響更大、挑戰更加嚴峻。按傳統交通能源動力系統發展下去,不可持續,實現我國交通能源動力系統轉型是大勢所趨。
Ⅷ 混合動力汽車電池的發展現狀 及其發展歷程!急!!!
、混合動力汽車
(一)混合動力汽車的技術特徵 混合動力汽車由內燃機和電動機共同驅動,混合動力汽車技術已經成為世界汽車產業發展的重要方向。混合動力汽車的關鍵是混合動力系統,它的性能直接關繫到混合動力汽車整車性能。經過十多年的發展,混合動力系統總成已從原來發動機與電機離散結構向發動機電機和變速箱一體化結構發展,即集成化混合動力總成系統。
混合動力汽車具有如下一些基本技術特徵:一是節約燃油,清潔環保。混合動力汽車既發揮了發動機持續工作時間長、動力性好的優點,又可以發揮電動機無污染、噪音低的好處。與目前的汽油車相比,混合動力汽車能夠節省25%~40%的燃油,尾氣排放也比汽油車和先進柴油車更為清潔。在同等條件下,混合動力汽車比純電動汽車節約電能70%~90%。目前,最先進的混合動力汽車百公里油耗低於3升。混合動力系統排放的二氧化碳比傳統內燃機低20%~40%(視不同的行駛狀況而定),大幅降低了污染物排放量。在繁華市區,可關停內燃機,由電動機單獨驅動,實現「零排放」。在交通日益擁堵的大城市,混合動力汽車更加能夠顯示出它節能、環保的優越性;二是可以利用現有的加油站加油,不必再投資建設新的加油站;三是可以十分方便地解決耗能大的空調、取暖、除霜等純電動汽車遇到的難題;四是不會對傳統汽車工業造成太大沖擊。由於混合動力汽車將新技術與傳統技術很好地結合起來,因而避免了傳統汽車工業已形成的龐大生產規模和社會基礎設施的巨大浪費,在一定程度上保障了傳統內燃汽車廠商的利益。五是技術已比較成熟,初步進入了商業化推廣階段。盡管混合動力汽車還未進入像先進柴油車那樣的大規模商業化推廣階段,但在先進柴油車之外諸多新能源汽車的解決方案中,只有混合動力汽車成功實現了商業化。混合動力汽車目前還存在生產成本較高、價格較高的問題,在當前的技術條件下,其成本比同類汽油車高30%左右,普通消費者接受它還需要一個過程。
(二)混合動力汽車的市場推廣情況融合了純電動汽車和燃油汽車優點的混合動力汽車,由於較好地滿足了汽車低排放、低油耗、高性價比的綜合要求,較好地解決了汽車節能與環保問題,因而逐漸成為世界各大汽車生產企業開發的熱點,其市場前景也越來越被看好。目前,豐田公司是混合動力汽車領域的佼佼者。
1997年12月,日本豐田汽車公司首先在日本市場上推出了世界上第一款批量生產的混合動力汽車「普銳斯(PRIUS)」,該轎車於2000年7月開始出口北美,同年9月開始出口歐洲。普銳斯在達成高水平的燃油經濟性和環保性能的前提下,實現了出色的動力性和舒適性。「PRIUS」的正式量產上市標志以混合動力汽車為代表的新一輪汽車研發競爭的開始。為保持領先地位,豐田公司加大了對混合動力車的投入。2005年,豐田投資1000萬美元在美國肯塔基州工廠改造設備和訓練員工,以生產混合動力車。2006年10月,肯塔基州工廠生產的第一輛佳美(Camry)混合動力家庭轎車下線,預計年產量為4.8萬輛。日本本田公司推出了「insight」、「CIVIC」等混合動力汽車,福特公司緊隨其後,推出了「ESCAPE」混合動力汽車,戴克、通用、雪鐵龍、日產等公司也紛紛加快了混合動力技術的產業化開發。
普銳斯1997年在日本上市後一直反應平平,2002年的銷售量不到40000輛。2003年下半年第二代普銳斯上市,由於技術得到很大的改進,銷量迅速增長到12萬輛。隨著油價的持續上漲,更多的消費者開始購買節油和環保的混合動力汽車,這使得美國和日本混合動力汽車市場率先經歷了「井噴式」增長。2005年,混合動力汽車的全球銷量增長到45萬輛,是2003年的近4倍。2000年以來,美國混合動力車市場實現了大幅增長。在美國市場,2004年混合動力汽車的銷售量僅為5萬輛,而2005年的銷售量快速增長到20.5萬輛,佔全部新車銷量的1.2%。
從1997年到2006年,豐田已在全球銷售75萬輛普銳斯、雷克薩斯等品牌的混合動力車,佔有混合動力汽車市場近70%的份額。2006年,豐田汽車公司在美國市場上推出了4款從現有車型改造成的混合動力汽車,這些混合動力汽車的外形、操控以及車內的設備和普通車完全一樣。豐田的目標是最終將推出旗下幾乎所有車型的混合動力版,並在2012年把混合動力汽車的產量提高到100萬輛。豐田公司預測,在未來的10年內,其在美國的全部轎車銷量中,混合動力車型將佔有25%的市場份額。
Ⅸ 電池電動車的歷史
世界上第一輛電動汽車於1881年誕生,發明人為法國工程師古斯塔夫•特魯夫,這是一輛用鉛酸電池為動力的三輪車,而在1873年,由英國人羅伯特•戴維森用一次電池作動力發明的電動汽車,並沒有列入國際的確認范圍。後來就出現了鉛酸、鎳鎘、鎳氫電池,鋰離子電池,燃料電池作為電力的電動車。
Ⅹ 電動汽車發展經歷了幾個黃金時段
第一階段:19世紀中期,1881年,第一輛使用鉛酸電池的電動汽車出現
第二階段:20世紀初期,內燃機的發展,讓純電動汽車退出市場。
第三階段:20世紀60年代,石油危機使人們又重新重視純電動汽車
第四階段:20世紀90年代,電池技術的滯後,使用電動汽車製造商改變發展方向
第五階段:21世紀初期,電池技術有所突破,各國開始大規模應用電動汽車
這一階段電池密度提升,電動汽車的續航水平也以每年50公里的速度提升,電機的動力表現已經不弱於一些低排量的燃油車。我國更是大力推進新能源汽車的技術發展和產品落地,截至目前我國已經成為全球新能源汽車保有量、產量最高的國家。