電動汽車驅動電機性能分析
㈠ 新能源汽車驅動電機的技術參數有哪些
1.新能源汽車具有環保、節約、簡單三大優勢。在純電動汽車上體現尤為明顯:以電動機代替燃油機,由電機驅動而無需自動變速箱。相對於自動變速箱,電機結構簡單、技術成熟、運行可靠。
2.傳統的內燃機能高效產生轉矩時的轉速限制在一個窄的范圍內,這就是為何傳統內燃機汽車需要龐大而復雜的變速機構的原因;而電動機可以在相當寬廣的速度范圍內高效產生轉矩,在純電動車行駛過程中不需要換擋變速裝置,操縱方便容易,噪音低。
3.與混合動力汽車相比,純電動車使用單一電能源,電控系統大大減少了汽車內部機械傳動系統,結構更簡化,也降低了機械部件摩擦導致的能量損耗及噪音,節省了汽車內部空間、重量。電機驅動控制系統是新能源汽車車輛行使中的主要執行結構,驅動電機及其控制系統是新能源汽車的核心部件(電池、電機、電控)之一,其驅動特性決定了汽車行駛的主要性能指標,它是電動汽車的重要部件。
4.電動汽車中的燃料電池汽車FCV、混合動力汽車HEV和純電動汽車EV三大類都要用電動機來驅動車輪行駛,選擇合適的電動機是提高各類電動汽車性價比的重要因素,因此研發或完善能同時滿足車輛行駛過程中的各項性能要求,並具有堅固耐用、造價低、效能高等特點的電動機驅動方式顯得極其重要。
5.驅動電機系統是新能源車三大核心部件之一。電機驅動控制系統是新能源汽車車輛行使中的主要執行結構,其驅動特性決定了汽車行駛的主要性能指標,它是電動汽車的重要部件。電動汽車的整個驅動系統包括電動機驅動系統與其機械傳動機構兩個部分。電機驅動系統主要由電動機、功率轉換器、控制器、各種檢測感測器以及電源等部分構成
㈡ 電動汽車用電動機性能要求有哪些
電動汽車驅動系統是電動汽車最關鍵的子系統,擔負著將電能轉變為機械能,並通過傳動裝置將能量傳遞到車輪進而驅動車輛按照駕駛員意志行駛的重任。電動汽車電動機是驅動系統的心臟。當電動機空氣質量選擇恰當時,驅動系統的新能就取決於驅動電動機。
電動汽車用驅動電機通常要求能夠頻繁啟動/停車、加速/減速,低速和爬坡時要求高轉矩,高速行駛時要求低轉矩,並要求變速范圍大。其主要參數包括:電動機類型、額定電壓、機械特性、效率、尺寸參數、可靠性和成本等。另外為電動汽車電動機所配置的電以常規車速確定電機額定轉速子控制系統和驅動系統也會影響驅動電動機的性能。
1)高電壓。在允許范圍內盡量採用高電壓,可減小電動機的尺寸和導線等裝備的尺寸,特別是可降低逆變器的尺寸。
2)高轉速。高轉速電動機體積小、質量輕
,有利於降低電動汽車的整車整備質。
3)質量輕。電動機採用鋁合金外殼
,以降低電以額定功率
/轉速確定電機額定轉矩動機質量、各種控制器裝備的質量和冷卻系統的質量等也要求盡可能輕。
4)較大的起動轉矩和較大范圍的調速性能。這樣使電動汽車有良好的啟動性能和加速性能。電動機有自動調速功能,因此可以減輕駕駛員的操縱強度,提高駕駛的舒適性
,
並且能達到與內燃機汽車加速踏板同樣的控制響應。
5)效率高、損耗少,並具有制動能量回收功能。電動汽車應具有最優化的能量利用,以在車載總能量不變的情況下最大限度的增加續駛里程,再生制動回收的能量一般可達到總能量的10%~20%,這是在內燃機汽車上不能實現的。
6)必須有高壓保護設備。
7)可靠性好、耐溫耐潮性能強及運行時雜訊低。
㈢ 新能源汽車電驅系統是怎麼
現代電動汽車電驅動系統主要由四大部分組成:驅動電機、變速器、功率變換器和控制器。驅動電機是電氣驅動系統的核心,其性能和效率直接影響電動汽車的性能。驅動電機和變速器的尺寸、重量也會影響到汽車的整體效率。功率變換器和控制器則對電動汽車的安全可靠運行有很大關系。
純電動汽車驅動電機,電力驅動系統類型
按電力驅動系統的組成和布置形式不同,純電動汽車分為機械傳動型、無變速器型、無差速器型和電動輪型四種類型。
機械傳動型純電動汽車
由發動機前置後輪驅動的燃油汽車發展而來,保留了內燃機汽車的傳動系統,只是把內燃機換成了電動機。這種結構可以提高純電動汽車的起動轉矩及低速時的後備功率,對驅動電動機要求低,可選擇功率較小的電動機。
無變速器型純電動汽車
驅動系統的最大特點是取消了離合器和變速器,採用固定速比減速器,通過電動機的控制實現變速功能。這種結構的優點是機構傳動裝置的質量較輕、體積較小,但對電動機的要求較高,不僅要求有較高的起動轉矩,而且要求有較大的後備功率,以保證純電動汽車的起步、爬坡、加速等動力性能。
無差速器型純電動汽車
結構採用兩個電動機,通過固定速比減速器分別驅動兩個車輪,每個電動機的轉速可以獨立調節。當汽車轉向時,由電子控制系統實現電子差速,因此,電動機控制系統比較復雜。
電動輪型純電動汽車
將電動機直接裝在驅動輪內(也稱為輪轂電動機),可進一步縮短電動機到驅動車輪之間的動力傳遞路徑,但需要增設減速比較大的行星齒輪減速器,以便將電動機轉速降低到理想的車輪轉速。這種結構對控制系統控制精度和可靠性的要求較高。
電力驅動系統特性
能量轉換效率高
無污染、零排放、對環境友好
靈活方便控制工作狀態
系統工作狀態不會受到外界環境的影響
總體重量不變
無雜訊,對環境沒有影響
安全性好
何為電動汽車三合一電驅系統技術?
電動汽車三合一電驅系統技術是指將電控、電機和減速器集成為一體的技術,隨著電動汽車技術的不斷演進,集成化設計將無可爭辯地成為未來發展的趨勢。
目前市面上比較前列的電動驅動系統
GKN吉凱恩(納鐵福)
在不需要純電動或混合動力驅動時,可以通過一個集成的切斷裝置將電動機從傳動系統中斷開,該裝置採用了機電驅動離合器。GKN還對齒輪和軸承布置進行了優化,實現更高的效率、更好地NVH性能和耐久性。
博世Bosch
博世Bosch新動力系統e-axle電動軸,使電動軸驅動可提供更佳的續航力。博世BOSCH電驅動橋特點:高度集成化、簡化冷卻管路和功率驅動線纜、平台化設計靈活適配不同車型。
ZF三合一電驅系統
采埃孚(ZF)研發的適用於小型和中型轎車的電動車驅動產品,能很好的適應未來的城市交通狀況。利用多面壓合連接技術來實現鋁制推力桿與鋼制橫結構的鏈接,具備電能轉化效率高和性能優異的特點。
㈣ 新能源汽車選用電機有何要求
1、電動汽車對於驅動電機的要求
目前電動汽車主要有三個性能指標:
(1)最大行駛里程(km):電動汽車在電池充滿電後的最大行駛里程;
(2)加速能力(s):電動汽車從靜止加速到一定的時速所需要的最小時間;
(3)最高時速(km/h):電動汽車所能達到的最高時速。
在美國某機場運營的純電動客車
大家都知道,電機分很多種。單工業電機就有很多。但是作為電動汽車的驅動電機,其誕生之初就有著獨特的性能要求:
(1)適用汽車各種工況:頻繁的啟動/停車、加速/減速,這就要求電動汽車的驅動電機滿足轉矩控制的動態性能要高。
(2)為了減少整車的重量,通常取消多級變速器,這就要求在低速或爬坡時,電機可以提供較高的轉矩,通常來說要能夠承受4-5倍的過載;
(3)驅動電機調速性能要好:要求調速范圍盡量大,同時在整個調速范圍內還需要保持較高的運行效率;
(4)電機設計時盡量設計為高額定轉速,同時盡量採用鋁合金外殼,高速電機體積小,有利於減少電動汽車的重量;
(5)電動汽車應具有最優化的能量利用,具有制動能量回收功能,再生制動回收的能量一般要達到總能量的10%-20%;
(6)可靠性好:鑒於電動汽車所使用的電機工作環境更加復雜、惡劣,因此,可靠性必須要高。同時還要保證電機生產的成本不能過高。
2、幾種常用的驅動電機
2.1直流電動機
直流電動機
在電動汽車發展的早期,大部分的電動汽車都採用直流電動機作為驅動電機,這類電機技術較為成熟,有著控制方式容易,調速優良的特點,曾經在調速電動機領域內有著最為廣泛的應用。
但是由於直流電動機有著復雜的機械結構,例如:電刷和機械換向器等,導致它的瞬時過載能力和電機轉速的進一步提高受到限制,而且在長時間工作的情況下,電機的機械結構會產生損耗,提高了維護成本。
此外,電動機運轉時電刷冒出的火花使轉子發熱,浪費能量,散熱困難,也會造成高頻電磁干擾,影響整車性能。由於直流電動機有著以上缺點,目前的電動汽車已經基本將直流電機淘汰。
2.2交流非同步電動機
交流非同步電動機
交流非同步電機是目前工業中應用十分廣泛的一類電機,其特點是定、轉子由硅鋼片疊壓而成,兩端用鋁蓋封裝,定、轉子之間沒有相互接觸的機械部件,結構簡單,運行可靠耐用,維修方便。交流非同步電機與同功率的直流電動機相比效率更高,質量約輕了二分之一左右。
如果採用矢量控制的控制方式,可以獲得與直流電機相媲美的可控性和更寬的調速范圍。由於有著效率高、比功率較大、適合於高速運轉等優勢,交流非同步機是目前大功率電動汽車上應用最廣的電機。
㈤ 電動汽車驅動電機的性能參數有哪些
電壓和安培
㈥ 電動汽車採用哪種驅動電機好
在環保的大環境下,電動汽車也成為了近年來研究的熱點,電動汽車在城市交通中可以實現零排放或極低排放,在環保領域優勢巨大,各國都在努力發展電動汽車。電動汽車主要是由電機驅動系統、電池系統和整車控制系統三部分構成,其中的電機驅動系統是直接將電能轉換為機械能的部分,決定了電動汽車的性能指標。因此,對於驅動電機的選擇就尤為重要。
1電動汽車對於驅動電機的要求
目前對於電動汽車性能的評定,主要是考慮以下三個性能指標:(1)最大行駛里程(km):電動汽車在電池充滿電後的最大行駛里程;(2)加速能力(s):電動汽車從靜止加速到一定的時速所需要的最小時間;(3)最高時速(km/h):電動汽車所能達到的最高時速。
針對於電動汽車的驅動特點所設計的電機,相比於工業用電機有著特殊的性能要求:(1)電動汽車驅動電機通常要求可以頻繁的啟動/停車、加速/減速、轉矩控制的動態性能要求較高;(2)為了減少整車的重量,通常取消多級變速器,這就要求在低速或爬坡時,電機可以提供較高的轉矩,通常來說要能夠承受4-5倍的過載;(3)要求調速范圍盡量大,同時在整個調速范圍內還需要保持較高的運行效率;(4)電機設計時盡量設計為高額定轉速,同時盡量採用鋁合金外殼,高速電機體積小,有利於減少電動汽車的重量;(5)電動汽車應具有最優化的能量利用,具有制動能量回收功能,再生制動回收的能量一般要達到總能量的10%-20%;(6)電動汽車所使用的電機工作環境更加復雜、惡劣,要求電機在有著很好的可靠性和環境適應性,同時還要保證電機生產的成本不能過高。
2幾種常用的驅動電機
2.1直流電動機
在電動汽車發展的早期,大部分的電動汽車都採用直流電動機作為驅動電機,這類電機技術較為成熟,有著控制方式容易,調速優良的特點,曾經在調速電動機領域內有著最為廣泛的應用。但是由於直流電動機有著復雜的機械結構,例如:電刷和機械換向器等,導致它的瞬時過載能力和電機轉速的進一步提高受到限制,而且在長時間工作的情況下,電機的機械結構會產生損耗,提高了維護成本。此外,電動機運轉時電刷冒出的火花使轉子發熱,浪費能量,散熱困難,也會造成高頻電磁干擾,影響整車性能。由於直流電動機有著以上缺點,目前的電動汽車已經基本將直流電機淘汰。
2.2交流非同步電動機
交流非同步電機是目前工業中應用十分廣泛的一類電機,其特點是定、轉子由硅鋼片疊壓而成,兩端用鋁蓋封裝,定、轉子之間沒有相互接觸的機械部件,結構簡單,運行可靠耐用,維修方便。交流非同步電機與同功率的直流電動機相比效率更高,質量約輕了二分之一左右。如果採用矢量控制的控制方式,可以獲得與直流電機相媲美的可控性和更寬的調速范圍。由於有著效率高、比功率較大、適合於高速運轉等優勢,交流非同步機是目前大功率電動汽車上應用最廣的電機。目前,交流非同步電機已經大規模化生產,有著各種類型的成熟產品可以選擇。但在高速運轉的情況下電機的轉子發熱嚴重,工作時要保證電機冷卻,同時非同步電機的驅動、控制系統很復雜,電機本體的成本也偏高,相比較於永磁式電動機和開關磁阻電機而言,非同步電機的效率和功率密度偏低,對於提高電動汽車的最大行駛里程不利。
2.3永磁式電動機
永磁式電動機根據定子繞組的電流波形的不同可分為兩種類型,一種是無刷直流電機,它具有矩形脈沖波電流;另一種是永磁同步電機,它具有正弦波電流。這兩種電機在結構和工作原理上大體相同,轉子都是永磁體,減少了勵磁所帶來的損耗,定子上安裝有繞組通過交流電來產生轉矩,所以冷卻相對容易。由於這類電機不需要安裝電刷和機械換向結構,工作時不會產生換向火花,運行安全可靠,維修方便,能量利用率較高。
永磁式電動機的控制系統相比於交流非同步電機的控制系統來說更加簡單。但是由於受到永磁材料工藝的限制,使得永磁式電動機的功率范圍較小,一般最大功率只有幾十千萬,這是永磁電機最大的缺點。同時,轉子上的永磁材料在高溫、震動和過流的條件下,會產生磁性衰退的現象,所以在相對復雜的工作條件下,永磁式電機容易發生損壞。而且永磁材料價格較高,因此整個電機及其控制系統成本較高。
2.4開關磁阻電機
開關磁阻電機作為一種新型電機,相比其他類型的驅動電機而言,開關磁阻電機的結構最為簡單,定、轉子均為普通硅鋼片疊壓而成的雙凸極結構,轉子上沒有繞組,定子裝有簡單的集中繞組,具有結構簡單堅固、可靠性高、質量輕、成本低、效率高、溫升低、易於維修等諸多優點。而且它具有直流調速系統的可控性好的優良特性,同時適用於惡劣環境,非常適合作為電動汽車的驅動電機使用。
考慮到作為電動汽車驅動電機使用,直流電機和永磁式電機在結構和面對復雜的工作環境適應性太差,很容易發生機械和退磁的故障,所以本文著重介紹開關磁阻電機與交流非同步機相比,有著以下方面的明顯優勢。
2.4.1電機本體結構方面
開關磁阻電機的結構比鼠籠式感應電機更簡單,其突出的優點是轉子上沒有繞組,僅僅是由普通硅鋼片疊壓而成。整個電機的損耗大部分集中於定子繞組上,這使得電機製造簡單,絕緣性好,容易冷卻,有著優秀的散熱特性,這種電機結構能減小電機體積和重量,可以用很小的體積取得較大的輸出功率。由於電機轉子機械彈性好,所以開關磁阻電機可以用於超高速運行。
2.4.2電機驅動電路方面
開關磁阻電機驅動系統的相電流是單向的,同時與轉矩方向無關,可以只用一個主開關器件來滿足電機的四象限運行狀態。功率變換器電路與電機的勵磁繞組直接串聯,各相電路獨立供電,即使電機的某相繞組或者控制器發生故障,只需使該相停止工作即可,不會造成更大的影響。所以,無論電機本體還是功率變換器都十分安全可靠,所以比非同步機更適合用於惡劣環境。
2.4.3電機系統性能方面
開關磁阻電機的控制參數多,很容易通過適當的控制策略和系統設計滿足電動汽車的四象限運行的要求,並且在高速運行區域也能保持優秀的制動能力。開關磁阻電機不僅效率高,而且在很寬的調速范圍內都可以保持高效率,這是其他類型的電機驅動系統難以媲美的。這種性能十分適合應用於電動汽車的運行情況,非常有利於提高電動汽車的續行里程。
㈦ 純電動汽車電機的特點
純電動汽車電機的特點?
1、無污染、雜訊小電動汽車無內燃機汽車工作時產生的廢氣,不產生排氣污染,對環境保護和空氣的潔凈是十分有益的,幾乎是「零污染」。
眾所周知,內燃機汽車廢氣中的CO、HC及NOX、微粒、臭氣等污染物形成酸雨酸霧及光化學煙霧。電動汽車無內燃機產生的雜訊,電動機的雜訊也較內燃機小。雜訊對人的聽覺、神經、心血管、消化、內分泌、免疫系統也是有危害的。
2、單一的電能源
相對於混合動力汽車和燃料電池汽車,純電動汽車以電動機代替燃油機,噪音低、無污染,電動機、油料及傳動系統少佔的空間和重量可用以補償電池的需求;且因使用單一的電能源,電控系統相比混合電動車大為簡化,降低了成本,也可補償電池的部分價格。
3、結構簡單,維修方便
電動汽車較內燃機汽車結構簡單,運轉、傳動部件少,維修保養工作量小。當採用交流感應電動機時,電機無需保養維護,更重要的是電動汽車易操縱。純電動汽車的分類
1、電動轎車是目前最常見的純電動汽車。除了一些概念車,純電動轎車已經有了小批量生產,並已進入汽車市場。
2、電動貨車用作功率運輸的電動貨車比較少,而在礦山、工地及一些特殊場地,則早已出現了一些大噸位的純電動載貨汽車。
3、電動客車,純電動小客車也較少見;純電動大客車用作公共汽車,在一些城市的公交線路以及世博會、世界性的運動會上,已經有了良好的表現。
㈧ 電驅動系統性能分析包括
中心簡介:汽車底盤技術研發中心擁有國內領先的耐久性能、行駛性能開發設備和能力,可提供整車耐久性能開發解決方案,包括載荷譜採集、CAE模擬優化、台架試驗驗證、用戶關聯等技術服務,並廣泛應用於新能源汽車、商用車、軌道交通、輕質材料等領域。
1、電驅動系統結構性能開發
針對電機、驅動橋以及齒輪箱等傳動系統部件,根據其結構特點和載荷傳遞特性,中心運用用戶關聯技術,通過關鍵載荷採集及分解、瞬態有限元模擬分析和等效載荷台架試驗相結合的方法,對電驅動系統結構進行精準的性能分析評估及優化,並成功應用於「復興號」等軌道車輛、電動車,積累了豐富的工程實踐經驗。
本中心在電驅動系統結構性能開發領域可開展的工作如下:
電驅動系統結構性能開發的主要對象
1.電機 2.驅動橋 3.齒輪箱
電驅動系統結構性能開發案例
1.電驅動總成潤滑、結構、傳動效率性能優化
進行產品設計方案的結構性能模擬分析與評價,通過齒輪修形改善齒軸系統可靠性,評價極限工況條件下的潤滑性能。
減速器殼體—多體
動力學載荷提取
減速器潤滑油
飛濺分析
減速器殼體軸承孔
動剛度計算
減速器齒輪傳動
功率損失計算
減速器殼體強度分析
減速器殼體強度分析
減速器輪齒嚙合--接觸斑點分析
傳動效率提升3%,殼體輕量化質量減輕5%;
優化接觸斑點及傳遞誤差,有效降低振動雜訊。
2. 齒輪箱總成結構性能開發
完成齒輪箱結構的齒輪傳動系統動力學分析、可靠性分析以及溫度場分析等模擬計算,為確保齒輪箱在工作過程中的安全穩定運行提供技術保障。
①齒輪傳動系統動力學分析
②輪齒嚙合接觸應力分析
③齒輪箱箱體吊桿強度分析
④柔性聯軸節強度分析
①齒輪箱箱體止擋強度分析
③ 齒輪箱溫度場分析
② 齒輪箱總成模態分析
④ 齒輪箱箱體疲勞強度
3、電驅動系統結構台架試驗能力介紹
① 前驅變速器綜合試驗台 ② 變速器靜扭試驗台
③ 多功能潤滑試驗台 ④ 變速器無負載試驗台
⑤ 新能源電機測試台 ⑥ 驅動橋模態試驗
⑦ 齒輪箱載入試驗台
⑧ 驅動橋總成靜扭試驗
㈨ 新能源汽車電動機的性能指標有哪些
驅動電動機的作用是將電源的電能轉化為機械能,通過傳動裝置或直接驅動車輪和工作裝置。目前電動汽車上廣泛採用直流串激電動機,這種電機具有軟的機械特性,與汽車的行駛特性非常相符。但直流電動機由於存在換向火花,功率小、效率低,維護保養工作量大;隨著電機控制技術的發展,勢必逐漸被直流無刷電動機(bldcm)、開關磁阻電動機(srm)和交流非同步電動機所取代,如無外殼盤式軸向磁場直流串勵電動機。
電動機調速控制裝置是為電動汽車的變速和方向變換等設置的,其作用是控制電動機的電壓或電流,完成電動機的驅動轉矩和旋轉方向的控制。
早期的電動汽車上,直流電動機的調速採用串接電阻或改變電動機磁場線圈的匝數來實現。因其調速是有級的,且會產生附加的能量消耗或使用電動機的結構復雜,現已很少採用。目前應用較廣泛的是晶閘管斬波調速,通過均勻地改變電動機的端電壓,控制電動機的電流,來實現電動機的無級調速。在電子電力技術的不斷發展中,它也逐漸被其他電力晶體管(入gto、mosfet、btr及igbt等)斬波調速裝置所取代。從技術的發展來看,伴隨著新型驅動電機的應用,電動汽車的調速控制轉變為直流逆變技術的應用,將成為必然的趨勢。
在驅動電動機的旋向變換控制中,直流電動機依靠接觸器改變電樞或磁場的電流方向,實現電動機的旋向變換,這使得電路復雜、可靠性降低。當採用交流非同步電動機驅動時,電動機轉向的改變只需變換磁場三相電流的相序即可,可使控制電路簡化。此外,採用交流電動機及其變頻調速控制技術,使電動汽車的制動能量回收控制更加方便,控制電路更加簡單。
電動汽車的制動裝置同其他汽車一樣,是為汽車減速或停車而設置的,通常由制動器及其操縱裝置組成。在
電動汽車上,一般還有電磁製動裝置,它可以利用驅動電動機的控制電路實現電動機的發電運行,使減速制動時的能量轉換成對蓄電池充電的電流,從而得到再生利用。目前國內電動汽車在大功率載客汽車,給提供空氣制動設備有耐力naili滑片式空氣壓縮機,主要是壓縮空氣的制動方式。
㈩ 新能源汽車,電機驅動和傳統汽車的發動機驅動相比,具有哪些技術優勢
電機驅動與發動機驅動相比,具有以下兩的技術優勢,一由於發動機能高效產生轉距時的轉速被限制在一個交點的范圍內,因而需要通過龐大而復雜的變速機構來適應這一特性,而電機可以在相當寬廣的轉速范圍內高效的產生轉集。二電機實現轉矩,快速響應指標要比發動機高出兩個數量級