电动汽车驱动系统布置方案
1. 纯电动汽车有哪些布置形式
电动汽车的结构布置各式各样,比较灵活,概括起来分为纯电动汽车电动机中央驱动和电动轮驱动两种形式。电动机中央驱动形式借用了内燃机汽车的驱动方案,将内燃机换成电动机及其相关器件,用一台电动机驱动左右两侧的车轮。
电动轮驱动形式的机械传动装置的体积与质量较电动机中央驱动形式的大大减小,效率显著提高,代价是增加了控制系统的复杂程度与成本。
纯电动汽车采用电动机中央驱动形式,直接借用了内燃机汽车的驱动方案,由发动机前置前驱发展而来,由电动机、离合器、变速箱和差速器组成。用电驱动装置替代了内燃机,通过离合器将电动机动力与驱动轮进行连接或动力切断,变速箱提供不同的传动比以变更转速—功率曲线匹配的需要,差速器实现转弯时两车轮不同车速的行驶。
纯电动汽车采用双电动机电动轮驱动方式,机械差速器被两个牵引电动机所代替,两个电动机分别驱动各自车轮,转弯时通过电子差速控制以不同车速行驶,省掉了机械变速器。
纯电动汽车所独有的以蓄电池作能量源的一种结构,蓄电池可以布置在上的四周,也可以集中布置在车的尾部或者布置在底盘下面。所选用的蓄电池应该能提供足够高的比能量和比功率,并且在车辆制动时能回收再生制动能量。具有高比能量和高比功率的动力电池对纯电动汽车的加速性和爬坡能力。
为了解决一种蓄电池不能同时满足对比能量和比功率的要求这个问题,可以在纯电动汽车同时采用两种不同的蓄电池,其中一种能提供高比能量,另外一种提供高比功率。两种电池作混合能量源的基本结构,这两种结构不仅分开了对比能量和比功率的要求,而且在汽车下坡或制动时可利用蓄电池回收能量。
燃料电池所需的氢气不仅能以压缩氢气、液态氢或金属氢化物的形式储存,还可以由常温的液态燃料如甲醇或汽油随车产生。一个带小型重整器的纯电动汽车的结构,燃料电池所需的氢气由重整随车产生。
(1)电动汽车驱动系统布置方案扩展阅读
发展历史
早在19世纪后半叶的1873年,英国人罗伯特·戴维森(Robert Davidson)制作了世界上最初的可供实用的电动汽车。这比德国人戴姆勒(Gottlieb Daimler)和本茨(Karl Benz)发明汽油发动机汽车早了10年以上。
戴维森发明的电动汽车是一辆载货车,长4800mm,宽1800mm,使用铁、锌、汞合金与硫酸进行反应的一次电池。其后,从1880年开始,应用了可以充放电的二次电池。从一次电池发展到二次电池,这对于当时电动汽车来讲是一次重大的技术变革,由此电动汽车需求量有了很大提高。
在19世纪下半叶成为交通运输的重要产品,写下了电动汽车在人类交通史上的辉煌一页。1890年法国和英伦敦的街道上行驶着电动大客车,当时的车用内燃机技术还相当落后,行驶里程短,故障多,维修困难,而电动汽车却维修方便。
在欧美,电动汽车最盛期是在19世纪末。1899年法国人考门·吉纳驾驶一辆44kW双电动机为动力的后轮驱动电动汽车,创造了时速106km的记录。
1900年美国制造的汽车中,电动汽车为15755辆,蒸汽机汽车1684辆,而汽油机汽车只有936辆。进入20世纪以后,由于内燃机技术的不断进步,1908年美国福特汽车公司T型车问世,以流水线生产方式大规模批量制造汽车使汽油机汽车开始普及,致使在市场竞争中蒸汽机汽车与电动汽车由于存在着技术及经济性能上的不足,使前者被无情的岁月淘汰,后者则呈萎缩状态。
2. 上汽乘用车的新能源汽车,在电驱动系统的布局有哪些
上汽集团对未来提出电动化、网联化、智能化、共享化的“新四化”布局;半个月后在上海车展的前一天上汽集团召开了主题为“互联网X新能源”的汽车创行者大会。上汽集团频繁的动作背后是对传统汽车企业转型的一种新思考,随后上汽也基于“电动化”、“新能源”方面开启实质性进展。
5月3日,根据中国商务部反垄断局日前发布的一则公示显示,中国汽车业巨头——上汽集团和中国新能源汽车电池新锐——宁德时代新能源科技股份有限公司(下称“宁德时代”)联合成立动力电池公司。目前,作为新能源汽车竞争中的重要部分,动力电池尤为关键,有业内人士认为,此次上汽集团与宁德时代的联手意义深远。
一场“联姻”产两“子”
通过整理资料发现,目前宝马、上汽、北汽新能源、吉利、长安汽车等几大主机厂均与宁德时代有合作。在中国新能源汽车市场除了比亚迪外,其它主要新能源汽车企业均选购宁德时代电池产品,这也从侧面证明宁德时代在动力电池行业的领先地位与技术实力。
有分析指出,上汽集团与宁德时代合资,抢占了发展先机。比其它主机厂只是简单从宁德时代购买动力电池,上汽集团通过与宁德时代成立电池合资公司,与宁德时代的合作更深入,但在动力电池采购成本、供应上,上汽集团显然将比其它主机厂具有更大的优势,而这将提高上汽集团新能源汽车产品的市场竞争力。例如此前特斯拉与松下合作,双方业务的彼此带动,共同成长为各自领域的巨头。现在上汽集团与宁德时代的合资,或将再次书写一段“共同成长”史。
3. 纯电动汽车驱动系统结构形式有哪些分别包括哪些零件
电动汽车定义:纯电动汽车是完全由可充电电池(如铅酸电池、镍镉电池、镍氢电池或锂离子电池)提供动力源,以电动机为驱动系统的汽车。
其动力系统主要由动力电池、驱动电动机组成,从电网取电或更换蓄电池获得电能。
电动汽车最早的历史可以追溯到19世纪后期,在1881年8-11月巴黎举行的国际电器展览会上,展出了法国人古斯塔夫•特鲁夫研制的电动三轮车,这是世界上第一辆电动车辆,它采用多次性铅酸充电电池和直流电动机,可以实际操作使用,这辆车的诞生具有划时代的意义。
在接下来的1882年,英国的威廉•爱德华•阿顿和约翰•培里也合作研制了一辆电动三轮车,车的速度是4.4km/h。三位先驱的努力使得在燃油汽车尚未问世之前,电动汽车已经诞生,此后电动车辆在欧美等国家迅速兴起。
纯电动汽车的结构
传统内燃机汽车主要由发动机、底盘、车身、电气设备四大部分组成。 纯电动汽车与传统汽车相比,取消了发动机,传动机构发生了改变,根据驱动方式不同,部分部件已经简化或者取消,增加了电源系统和驱动电机等新机构。 由于以上系统功能的改变,纯电动汽车改由新的四大部分组成:电力驱动控制系统、底盘、车身、辅助 系统。
4. 纯电动汽车的驱动系统由哪些部分组成
电动汽车由动力电池、底盘、车身和电器四部分组成。动力电池作为电动汽车的重要组成部分,分为电池模组、电池管理系统、热管理系统、电气及机械系统这四个主要部分。底盘由驱动电机及控制系统、行驶系统、转向系统和制动及能量回收系统四部分组成。
纯电动汽车驱动系统的组成如图7所示,主要由中央控制单元、驱动控制器、驱动电动机、机械传动装置等组成。为适应驾驶人的传统操纵习惯,纯电动汽车仍保留了加速踏板、制动踏板及有关操纵手柄或按钮等。不过在电动汽车上是将加速踏板、制动踏板的机械位移量转换为相应的电信号输入到中央控制单元来对汽车的行驶实行控制的。对于挡位变速杆,为遵循驾驶人的传统习惯,一般仍需保留,同样除传统的驱动模式外也就只有前进、空挡、倒退三个挡位,并且以开关信号传输到中央控制单元来对汽车进行前进、停车、倒车控制。
5. 谁能提供关于电动汽车驱动系统的设计方案包括控制部分及功率部分的。
网上看到一篇文章,主控芯片用tms320lf2407a dsp芯片,IGBT模块用infineon公司的bsm300gb600dlc,IGBT驱动电路用落木源公司的TX-KA101,是05、06年的文章,应用应该比较成熟了,转贴给你供参考。
贴不上图,具体内容你再网上再搜搜。
《基于F2407aDSP的全数字混合动力电动汽车驱动系统的设计》
关键字:混合动力电动汽车、驱动、F2407A、bsm300gb600dlc、TX-KA101、bldcm
1 引言
随着城市环境污染问题的日益严重,汽车尾气的控制越来越受到人们的重视,很多国家都开展了电动汽车的研究。但是电动汽车存在续驶里程短、动力性能差等弱点,加之成本太高,目前还无法大批量投入市场。为了兼顾传统燃油汽车和电动汽车的优点,国内外都开始进行混合动力汽车的研究。混合动力电动汽车是目前解决低排放、大幅度地降低污染最有效最现实的一种环保交通工具,它不仅具有续驶里程长的优点,还能发挥出更好的动力性能。混合动力电动汽车同时拥有电机驱动和内燃机驱动,对电机驱动系统不仅要求具有较高的重量比功率,而且既能作电动机运行,还能作发电机运行。
本文所介绍的混合动力系统采用tms320lf2407a dsp芯片构成主控制器,同时选用infineon公司的bsm300gb600dlc igbt模块作为功率器件,选用北京落木源公司的TX-KA101作为IGBT驱动芯片。实现了基于无刷直流电机(brushless dc motor, bldcm)的控制系统。实验结果表明,该系统设计合理,性能可靠。
2 bldcm的控制原理
bldcm转子采用永磁体激磁,功率密度高,控制简单,调速性能好,既具备交流电动机的结构简单、运行可靠、维护方便等特点,又具备直流电机的运行效率高、无励磁损耗以及调速性能好等诸多优点,故广泛应用于车辆驱动,家用电器等方面。
如图1所示,通常的无刷直流电机具有120°的反电动势波形,在每相反电动势的最大处通入电流,就能产生恒定的电磁转矩,其转矩表达式如下式。
图1 三相反电势和电流波形
(1)
其中td是电机的电磁转矩,ea、eb、ec分别是每相的反电动势,ia、ib、ic分别是每相的电流值,ω是电机的角速度。因此,当电机反电动势纯梯形分布时,其力矩与电流的大小成正比。但是,通常情况下电机的反电动势不是纯梯形分布,另外,由于电机绕组电感的存在使得电流在换相时存在脉动,从而造成较大的转矩脉动。已有大量的文献对bldcm的换相转矩脉动抑制进行了讨论。bldcm调速中另一个必须知道的是电机转子轴位置,一般通过检测电机的霍尔信号来获得,并以此进行电机的换相控制。
3 主电路以及控制策略
图2 驱动系统主电路
图2是整个系统的主电路图,本系统中,bldcm的驱动采用了buck+full_bridge的电路结构。与常规三相桥的驱动方式不同,通过控制buck电路的输出电流,即电感l1上的电流来使bldcm获得近乎直流的电流,以此来获得尽可能好的力矩控制效果。图3(a)、(b)、(c)分别是电感l1,电容c0以及电机母线端电流波形。
下面来分析该电路的工作原理。
(1) 正向电动模式
此时t1工作于开关状态,t2不导通,d2作为buck电路的二极管。通过控制电感l1上的电流和电容c0上的电压可以实现电路的恒流、恒压控制。此时,后端的full_bridge电路根据电机的三相霍尔信号进行换相控制,其开关工作在低频条件下。通过对电感l1电流的控制可以减少电机启动时的冲击电流,减少启动转矩的脉动。
图3 恒流控制下各元件电流波形
(2) 反向充电模式
当整个系统的内燃机开始工作后,后端bldcm处于发电状态。此时t2工作于开关状态,t1不导通,d1作为boost电路的二极管工作。通过控制boost电路的输出电压和电感l1上的电流可以使电路工作于恒压、恒流等模式,从而实现对蓄电池的恒压限流、恒流和浮充三段式充电方式。此时后端的三相桥电路工作于不控整流状态下。
(3) 制动模式
当车辆需要停止或刹车时,通过反向对蓄电池充电来进行制动,其工作方式与反向充电模式类似。此时电机内相反电动势与相电流反相位,其电磁转矩起制动作用,从而可以使电机很快的停下来。
4 系统软硬件设计
4.1 软件设计
f2407a控制程序由3个部分组成:主程序的初始化、pwm定时中断程序和dsp与周边资源的数据交换程序。
(1) 主程序
主程序先完成系统的初始化、i/o口控制信号管理、dsp内各个控制模块寄存器的设置等,然后进入循环程序,并在这里完成系统参数的保存。
(2) pwm定时中断程序
pwm定时中断程序是整个控制程序的核心内容,在这里实现电流环、速度环采样控制以及bldcm的换相控制、pwm信号生成、电感连续、断续控制,工作模式的选择,软件过流、过压的保护,以及与上位控制器的通讯等。中断控制程序周期为50μs,即igbt开关频率为20khz。其中每个开关周期完成电流环的采样和开关信号的输出,每20个开关周期完成一次速度环控制。pwm控制信号采用规则采样pwm调制方法生成。
(3) 数据交换程序
数据交换程序主要包括与上位机的通讯程序、eeprom中参数的存储。其中通讯可以采用rs-232或can总线接口,根据特定的通讯协议接受上位机的指令,并根据要求传送参数。eeprom的数据交换通过dsp的spi口完成。
4.2 硬件设计
(1) dsp以及周边资源
整个系统的控制电路由f2407a+gal组成。其中gal主要用于系统io空间的选通信号以及开关驱动信号的输出控制等。f2407a作为控制核心,接受上位机信息后判断系统的工作模式,并转换成igbt的开关信号输出,该信号经隔离电路后直接驱动igbt模块给电机供电。另外eeprom用于参数的保存和用户信息的存储。
(2) 功率电路
系统的功率器件选用了infineon公司bsm300 gb600dlc igbt模块,其内部集成2个igbt开关管,耐压600v,耐流300a。驱动选用北京落木源公司的TX-KA101 igbt驱动芯片,内含三段式的过流保护电路。系统的辅助电源采用反激式开关电源,主要供电包括系统所有开关管的驱动电源,f2407a和gal以及其他控制芯片的电源和采样lem以及三相霍尔的工作电源。
(3) 采样电路
本系统需要采样电感l1上的电流,另外需要对蓄电池电压和电机端输入电压进行采样,从而完成电路的恒流、恒压等控制功能。采样电路采用霍尔传感器并经模拟电路处理在0~3.3v的电压范围内,再送入f2407a的ad采样口。
(4) 转子位置检测电路
电机位置反馈采用双极性锁存型霍尔元件,在电机的每相绕组处都安放一个元件。霍尔信号根据电机转子磁极的极性来产生方波信号。霍尔元件安放的位置通常有60°和120°之分。f2407a通过判断方波信号跳变的极性来获取换相信息,同时记录方波脉冲的个数来计算电机的转速,从而实现电机速度的闭环控制。
(5) 保护电路
系统的保护分为软硬件保护,由于硬件保护速度较快,通常用于驱动信号的直接封锁。从保护等级来分,可以分系统级保护和驱动级保护,其中,驱动级保护是通过igbt驱动芯片TX-KA101特有的保护功能来实现的。系统级保护包括控制器的过流、过压、欠压,过温以及霍尔元件故障等保护。
5 实验结果
实验中采用了宁波欣达集团乐邦电机厂的bldcm,其额定功率为50kw,最大功率100kw,额定转矩212n·m,额定转速2300r/min,额定电流214a。额定电压336v,通过蓄电池组供电。整个驱动系统采用f2407a dsp芯片控制,其开关频率为20khz,电感l1=75μh,电容c0=100μf。功率模块选用infineon公司的bsm300gb600dlc低损耗igbt模块,其内部是一个半桥电路,具有低引线电感的封装结构。系统散热采用水冷。图4是正向电动时电感l1上的电流,此时电流连续,图5是电流连续时二极管d2两端的电压波形,可以看出几乎没有尖峰电压。图6是电感电流不连续时的波形,图7是电流断续时二极管d2两端电压波形。图8是电机轻载时的相电流波形,其电流较为平稳。图9,图10分别是igbt在导通和关断时的电压波形,其开关时间都在100ns左右,且关断时没有尖峰电压。
图4 正向放电电流连续波形
图5 电流连续时二极管电压结论
图6 正向放电电流断续波形
图7 电流断续时二极管电压
图8 电机相电流波形
图9 igbt导通时的电压波形
图10 igbt关断时的电压波形
6 结束语
本系统控制上采用dsp的数字结构,电路设计简单,紧凑,满足了大功率bldcm的实时控制要求。同时全数字化的控制,使系统在控制精度、功能和抗干扰能力上都有了很大程度的提高。整个系统不仅具有正向电动的功能,同时具有反向充电和制动功能。实验结果表明该系统设计合理,适应混合动力电动汽车的应用要求。
6. 纯电动汽车驱动布置方式有哪些,请简要说明其特点
分散能独立式示意图
纯电动汽车驱动布置主要有两种形式: 1.集中驱动 2.分散独立驱动 ,由上图可以看出,两种形式的主要区别在于驱动电机的位置及个数。
集中驱动式结构简单紧凑,适合量产
分散独立驱动式结构相对复杂,优点是可以独立控制、实现车轮独立运转
7. 特斯拉电动汽车驱动系统布置形式有哪些
特斯拉公司目前主推的 Model S 属于豪华类型,售价在 7 万-10 万美元之间,但是其续航里程可以达到 265 英里,远超目前市面上所有的电动汽车(比如尼桑的 Leaf 电动车的续航只有 75 英里)。据了解,特斯拉公司计划在数年之内向市场提供售价在 3-3.5 万美元之间的电动汽车,但是性能并不缩水,续航里程将与 Model S 豪华车接近。为了让电动汽车更实用,特斯拉公司将要在美国全境建立起快速充电站网络,所有特斯拉的电动汽车可以在快速充电站用半小时充满可以行驶 200 英里的电力(从下文你可以知道,特斯拉已经具备了这样的实力)。我的试驾行程:从加州的帕洛阿尔托行驶到旧金山,然后又在高速上开到了圣克鲁兹,之后去了特斯拉生产车间,最后返回了帕洛阿尔托的特斯拉公司总部,行驶总里程约为 230 英里。当我在帕洛阿尔托提车时发现这辆车的电池并没有充满,可能是工作人员昨天晚上没有充电,汽车的控制面板上显示着汽车的电池可以供应行驶 208 英里(充满电可以行驶 265 英里)。如果我想完成上面的行程,就必须在快速充电站停一次。当前的电动汽车相比燃油汽车有许多优点:对于上班族来说,不再需要开车去加油站排队加油,只需要回家花十来块钱充电就行了
8. 纯电动汽车驱动系统布置方式有哪些
链条的,半轴的,还有直驱的【汽车有问题,问汽车大师。4S店专业技师,10分钟解决。】