当前位置:首页 » 新型汽车 » 电动汽车实时控制策略是什么

电动汽车实时控制策略是什么

发布时间: 2021-05-25 15:32:47

❶ 纯电动汽车CAN总线应用整车控制策略研究与经验

纯电动汽车的国内外发展背景

汽车享有“第一商品”的美誉,因为,汽车工业的发展,可以带动众多产业发展。一辆轿车的零部件数以万计,附加值很高,一辆车背后是一系列的产业。因此,汽车工业也就成为了衡量一个国家工业化水平和综合科技水平的重要标志。

我国的汽车工业水平落后先进国家,短时间内在内燃机领域是不可能消除差距的,中国大规模发展燃油车动力汽车,在环境、资源、技术等方面面临严重压力,所以,从国内的资源和环境条件,也要求中国在未来的汽车工业必须探索新的思路。

随着我国国民经济持续高速发展,轿车成为我国居民消费的主要商品之一,我国汽车工业也将迎来一个快速发展的机遇,发展燃油车,会依赖石油资源需求的激增,同时会造成对环境、环保的负面影响,电动汽车恰好避免或者减少这些不利因素。

当代融合多种高新技术企业而兴起的纯电动汽车、混合动力汽车正在引发世界汽车工业一场革命,展现了中国企业工业的光明未来。近些年来,美国、日本、欧洲的一些国家和跨国公司已经投入大量资金和研发成本,我国也奋起直追,积极投入电动汽车研究与开发,目前新能源车在市场、整车、生产、应用等多方面实现了赶超和创新成果转化及产业化。

在电动汽车领域,我们和世界发达国家处于同一起跑线,不少方面还处于世界领先地位,这为我国汽车工业技术实现跨越发展提供了一次历史性的机遇。更重要的是我国还有后发优势,因为生产电动汽车不仅仅是发动机的更改,而且是设计、制造、材料、电气、控制和整个社会服务体系的全面变革,我国电动汽车发展,没有包袱,市场巨大,生存空间充足。

此外,我们还可以通过开发自主的电动汽车,申请专利、制定标准,保护自己的汽车工业。加入世贸组织后,再靠关税、政府政策来保护本国利益已经不行了,一流企业做标准,国家也一样,这是产业的游戏规则。电动汽车的零排放标准及低排放控制政策就可以很好的保护本国的合法权益。

我国电动汽车开发走在国际的前列,目前还需要攻破关键的电池技术,电机和电控基本已经完善,面向世界推出纯电动汽车、燃料电池电动汽车和混合动力电动汽车。

纯电动汽车CAN总线实际应用

2016年,速锐得科技与中汽中心、清华大学、国家计量、环保部等,用一年时间研究了纯电动汽车和重型燃油车排放等标准。速锐得作为合作方,主要任务是定制纯电动汽车CAN总线应用层和开发CAN总线整车控制策略节点的软件部分和主控制器CAN总线底层DBC驱动程序。在充分理解整个系统的基础上,参考SAEJ1939协议定制符合电动汽车特点又兼容混合动力汽车的CAN总线协议,定制完成后,将适配好的DBC文件提交中汽中心。

CAN总线位定时?是在CAN中比较复杂的内容,现有的CAN总线方面对位定时讲解的过于含糊而且不统一,在纯电动汽车系统开发过程中,我们实际使用了远不止几款CAN芯片,在SAEJ1939的基础和CAN2.0B基础上,设计了符合电动汽车特点的CAN总线协议,引入了调度算法,提高了系统的性能,给纯电动汽车系统提供了一个良好的调试测试环境,还在CAN总线系统测试指导下,开发出指定车型的CAN总线监控节点的DBC文件。

纯电动汽车各ECU单元的作用

在纯电动汽车控制系统中,主要包括4个节点,即主控制器ECU、电机控制ECU、电池管理系统BMS及CAN总线控制单元。

主控制器ECU相当于纯电动汽车的大脑,它起到控制全局的作用,主控制器ECU接受汽车上传感器的信息,通过A/D转换后计算,编码为CAN报文,发送到总线上控制其他节点的工作。同时,将一些整车相关的信息(车速、电池SCO、踏板位置、电池状态、门锁信息)在组合仪表上显示出来。其中最核心的就是通过传感器的输入值与系统当前状态及汽车工况等条件计算出合适的电机扭矩值,通过CAN总线发送到电机控制系统,指挥电机正确工作。另外,主控制器ECU还控制主继电器的开关,使得整个系统上电和断电,行业有的把这些集成在VCU里面。

电机控制ECU相当于纯电动汽车的四肢,它的主要工作是主控制器发送扭矩值为输入值,采用双闭环控制来调速电机,使电机工作在需要的转速下,根据电动机的温度变化控制电机的冷却水泵和冷却风扇,从而有效的调节电机温度。

纯电动汽车的电池是有几十块单体电池成组供电的,并能保证在不供电时电池不成组,每块电池的电压不超过5V,这样由于单个电池的性能差异,就需要在电池充放电过程中经常要均衡电压,保证电池性能,这个由BMS电池管理系统来控制。BMS等同于电动汽车血液循环的心脏,电池为血液循环及能量系统。

纯电动汽车CAN总线的特点

CAN总线控制单元主要是在不干扰总线数据传输的情况下,对总线上传输的数据进行实时监控,实时记录和实时报警,还提供了离线分析功能在纯电动汽车调试阶段对主控制器主要计算参数进行标定。各个子系统依靠CAN总线传输数据,进行数据交换,实现整个分布式系统的控制功能,为了充分利用总线的带宽,合理分配了8个数据字节的空间,将相关的数据放到一个报文里进行传输,保证数据帧有效信息传输比重。

在纯电动汽车运行过程中,是一些固定的工作状态之间进行切换,一般有停车状态、充电状态、启动状态、运行状态、车辆前进和后退状态、回馈制动状态、机械制动状态、一般故障状态、重大故障状态。纯电动汽车控制系统正是通过CAN总线协议进行通讯和传递参数,将各个分散的节点连成一个闭环系统,把每个节点的特点发挥到最好,在CAN总线技术总有几个关键技术(定位时、总线终端匹配阻抗、CAN驱动器电路设计和DBC应用层协议的设计)这也是CAN调试中的难点。

CAN总线定位时本质上和总线的同步是紧密相关联的,CAN总线系统的收/发双方必须以同步时钟来控制数据的发送和接收。接收端在相当长的数据流中保持位同步。必须要能识别每个二进制位是从什么时候开始的。为此,对于硬件终端的处理能力提出了高处理能力的需求,如果是直接通过4G/5G远程传输到云端,目前行业内可能成熟的产品有速锐得的V81。为保证接收时钟和发送时钟严格一致,采用接收器通过调节器从数据中提出同步信号或者是接收器和发送器统一时钟的方法,CAN总线的定位时在系统位编码/解码时采用自有的方式保证系统同步。

CAN总线的一般按照功能的不同分为几个不同的时段:在预分频倍数确定时,一定波特率的CAN总线系统的同步段就是已经确定下来了,而其他几个时间段是可变的,所以,我们可以发现在位定时配置中可以存在几组不同的参数都可以满足波特率的要求,应用这些参数,系统基本上可以正常运行。但是在这些组的参数中,存在一组最优的,这组最优的配置参数需要根据系统的最大总线长度和总线节点的振荡器容差来确定。

如果要获得一个给定速率下的最大总线长度,就应考虑采样点应该尽可能接近周期的末尾处。如果要使系统中每个节点可以有更大的振荡器容差,则需要在位周期中点附近选择采样点,正是由于振荡器容差和总线长度的矛盾,所以需要我们优化位定时参数,使得系统获得更大的振荡器容差和最大总线长度。

本文来源于汽车之家车家号作者,不代表汽车之家的观点立场。

新能源汽车控制原理过程怎样的

在驾驶新能源汽车的时候,我们所使用的动力并不是来自汽油燃烧产生的动力,而是由燃料电池与蓄电池混合动力一起驱动汽车行驶的。这也是新能源汽车比传统的燃油汽车节能环保的地方。

最常用的控制策略有三个,分别是On/Off控制策略、功率跟随控制策略、顺势优化最佳能耗控制策略等,这都是最常见的是那样控制策略,

❸ 电动汽车能量回收控制策略是怎样的

比亚迪,车辆滑行中或刹车减速时驱动电机进入发电状态

❹ 电动汽车整车控制系统的作用

新能源汽车作为一种绿色的运输工具在环保、节能以及驾驶性能等方面具有诸多内燃机汽车无法比拟的优点,其是由多个子系统构成的一个复杂系统,主要包括电池、电机、制动等动力系统以及其它附件(如图1所示)。各子系统几乎都通过自己的控制单元(ECU)来完成各自功能和目标。为了满足整车动力性、经济性、安全性和舒适性的目标,一方面必须具有智能化的人车交互接口,另一方面,各系统还必须彼此协作,优化匹配,这项任务需要由控制系统中的整车控制器来完成。基于总线的分布式控制网络是使众多子系统实现协同控制的理想途径。由于CAN总线具有造价低廉、传输速率高、安全性可靠性高、纠错能力强和实时性好等优点,己广泛应用于中、低价位汽车的实时分布式控制网络。随着越来越多的汽车制造厂家采用CAN协议,CAN逐渐成为通用标准。采用总线网络可大大减少各设备间的连接信号线束,并提高系统监控水平。另外,在不减少其可靠性前提下,可以很方便地增加新的控制单元,拓展网络系统功能。

下面对每个模块功能进行简要的说明: 

1、开关量调理模块 

开关量调理模块,用于开关输入量的电平转换和整型,其一端与多个开关量传感器相连,另一端与微控制器相接; 

 2、继电器驱动模块 

继电器驱动模块,用于驱动多个继电器,其一端通过光电隔离器与微控制器相连,另一端与多个继电器相接;

3、高速CAN总线接口模块 

高速CAN总线接口模块,用于提供高速CAN总线接口,其一端通过光电隔离器与微控制器相连,另一端与系统高速CAN总线相接;

4、电源模块 

电源模块,可为微处理器和各输入和输出模块提供隔离电源,并对蓄电池电压进行监控,与微控制器相连;

5、模拟量输入和输出模块 

模拟量输入和输出模块,可采集0~5V模拟信号,并可输出0~4.095V的模拟电压信号。

6、脉冲信号输入和输出模块 

可采集脉冲信号并调理,范围1Hz—20KHZ, 幅度6---50V;输出PWM信号 范围1HZ—10KHZ,幅度0—14V。 7、故障和数据存储模块铁电存储器可以存储标定的数据和故障码,车辆特征参数等,容量32K。 

二、整车控制器功能说明

新能源汽车整车控制器基本上以下几项功能:

1. 对汽车行驶控制的功能 

新能源汽车的动力电机必须按照驾驶员意图输出驱动或制动扭矩。当驾驶员踩下加速踏板或制动踏板,动力电机要输出一定的驱动功率或再生制动功率。踏板开度越大,动力电机的输出功率越大。因此,整车控制器要合理解释驾驶员操作;接收整车各子系统的反馈信息,为驾驶员提供决策反馈;对整车各子系统的发送控制指令,以实现车辆的正常行驶。 

2. 整车的网络化管理 

在现代汽车中,有众多电子控制单元和测量仪器,它们之间存在着数据交换,如何让这种数据交换快捷、有效、无故障的传输成为一个问题,为了解决这个问题,德国BOSCH公司于20世纪80年代研制出了控制器局域网(CAN)。在电动汽车中,电子控制单元比传统燃油车更多更复杂,因此,CAN总线的应用势在必行。整车控制器是电动汽车众多控制器中的一个,是CAN总线中的一个节点。在整车网络管理中,整车控制器是信息控制的中心,负责信息的组织与传输,网络状态的监控,网络节点的管理以及网络故障的诊断与处理。

3. 制动能量回馈控制 

新能源汽车以电动机作为驱动转矩的输出机构。电动机具有回馈制动的性能,此时电动机作为发电机,利用电动汽车的制动能量发电,同时将此能量存储在储能装置中,当满足充电条件时,将能量反充给动力电池组。在这一过程中,整车控制器根据加速踏板和制动踏板的开度以及动力电池的SOC值来判断某一时刻能否进行制动能量回馈,如果可以进行,整车控制器向电机控制器发出制动指令,回收能部分能量。

4. 整车能量管理和优化 

在纯电动汽车中,电池除了给动力电机供电以外,还要给电动附件供电,因此,为了获得最大的续驶里程,整车控制器将负责整车的能量管理,以提高能量的利用率。在电池的SOC值比较低的时候,整车控制器将对某些电动附件发出指令,限制电动附件的输出功率,来增加续驶里程。

5. 车辆状态的监测和显示

整车控制器应该对车辆的状态进行实时检测,并且将各个子系统的信息发送给车载信息显示系统,其过程是通过传感器和CAN总线,检测车辆状态及其各子系统状态信息,驱动显示仪表,将状态信息和故障诊断信息经过显示仪表显示出来。显示内容包括:电机的转速、车速,电池的电量,故障信息等。

6. 故障诊断与处理 

连续监视整车电控系统,进行故障诊断。故障指示灯指示出故障类别和部分故障码。根据故障内容,及时进行相应安全保护处理。对于不太严重的故障,能做到低速行驶到附近维修站进行检修。 

7. 外接充电管理 

实现充电的连接,监控充电过程,报告充电状态,充电结束。 

8. 诊断设备的在线诊断和下线检测

负责与外部诊断设备的连接和诊断通讯,实现UDS诊断服务,包括数据流读取,故障码的读和清除,控制端口的调试。

❺ 电动汽车控制方式(电动汽车电驱动系统)是不是和变频器一个原理呢

电动汽车两个概念:楼上各位所说的是那些山寨电动汽车,用铅酸电池、直流电机,控制上就是简单的通断。严格的说那不是汽车。
真正意义上的电动汽车现在主要使用两种:永磁电机(丰田有使用)、交流异步电机(使用最广泛)。控制上都是矢量控制,说简单了就跟变频器差不多,但是控制上更复杂。

❻ 什么是控制策略

控制策略是对某一系统或仪器进行控制的策略和方法。换电站主动控制策略由 2 部分组成,一为换电站在架空线路和电缆线路配电网中的故障判别与应对策略,二为配电网故障情况下换电站中所有充放电机的协调控制策略。直流偏差斜率控制策略利用直流 偏差控制策略的偏差特性,利用直流 斜率控制策略的斜率特性,加快了其响能力。

在供电系统和用电设备中,由于输入电源的多样性,故改善整流器的性能,减小输入电流谐波含量,提高系统的功率因数具有重要意义。根据系统接线方式可以分为3P3W(three-phase three-wire)系统以及3P4W(three-phase four-wire)系统。其中3P3W 系统中应用较广的主要电路拓扑有三相三桥臂整流拓扑和维也纳整流拓扑等,如图1a、1b所示。除此之外,一些应用场合出于防雷、绝缘及中线电流补偿等考虑,需要采用3P4W 的连接方式,如并联有源电力滤波器、动态电压恢复器和不间断电源等。常见的3P4W 系统拓扑分为三桥臂-分裂电容拓扑以及四桥臂-全桥拓扑。由于三桥臂-分裂电容拓扑输入相电压只能在两个电平(-Udc/2, Udc/2)间跳变,谐波抑制效果相对较差,从而输入电流波形的畸变度也较高。对于四桥臂-全桥拓扑(下文以三相四桥臂整流器进行表述),由于增加了一个桥臂,对于电路结构而言,增加了其复杂性。但是在控制上,桥臂的增加使得对电路的控制更为灵活。

单周期控制的PFC 变换器无需产生输入电流基准,因而不需要使用乘法器和采样输入电源电压,简化了控制结构,降低了经济成本,在中小功率场合得到了广泛的应用 。在传统单周期控制策略中,载波信号幅值是由电压调节器产生,变换器输入电感电流采样直接作为调制信号与载波交割产生 PWM 信号,并经过相应的逻辑变换生成功率管控制信号,因此传统单周期控制策略中的PWM 信号可视为是通过SPWM 方式所获得。在这种调试方式下,三相PFC 变换器输出电压较高,直流母线电压利用率不足,不利于降低开关管耐压等级和提高系统效率。国内外文献关于降低单周期控制策略下的PFC 电路输出直流电压,提高直流母线电压利用率鲜有讨论。

针对3P4W 系统中的三相四桥臂整流拓扑分析了传统控制单周期控制策略。提出变革传统单周期控制策略的调制波形,将3 次谐波注入调制引入到传统单周期控制策略中,分析了改进后的单周期控制策略,给出了三相四桥臂整流器改进单周期控制策略示意图。通过改进的单周期控制策略可以降低三相四桥臂整流器输出电压,提高直流母线电压利用率,且不影响系统正常工作。同时,改进的单周期控制策略可推广至其他三相PFC 变换器。系统仿真与实验表明了理论分析的正确性。

❼ 纯电动汽车的电池管理

纯电动汽车电池管理系统作为电池系统的重要组成部分,具有实时监控电池状态、优化使用电池能量、延长电池寿命和保证电池的使用安全等重要作用。电池管理系统对整车的安全运行、整车控制策略的选择、充电模式的选择以及运营成本都有很大影响。电池管理系统无论在车辆运行过程中还是在充电过程中都要可靠地完成电池状态的实时监控和故障诊断,并通过总线的方式告知车辆集成控制器或充电机,以便采用更加合理的控制策略,达到有效且高效使用电池的目的。
电池管理系统采用集散式系统结构,每套电池管理系统由1台中央控制模块(或称主机)和10个电池测控模块(或称从机)组成。电池管理系统检测模块安装在电池箱前面板内;电池管理系统主控模块安装在车辆尾部高压设备仓内,
电池管理系统的功能如下:
1.电体电池电压的检测
2.电池温度的检测
3.电池组工作电流的检测
4.绝缘电阻检测
5.冷却风机控制
6.充放电次数记录
7.电池组SoC的估测
8.电池故障分析与在线报警
9. 各箱电池充放电次数记录
10.各箱电池离散性评价
11.与车载设备通信,为整车控制提供必要的电池数据CAN1
12.与车载监控设备通信,将电池信息送面板显示CAN2
13.与充电机通信,安全实现电池的充电RS—485
14.有简易的设备实现纯电动汽车电池管理系统的初始化功能,能满足电池快速更换以及电池箱重新编组的需要。

❽ 油电混合动力汽车手机远程控制启动是什么原理使用移动管家手机智能钥匙控制混合动力电动汽车启动方法

手机远程控制小汽车,利用无线通信技术,基本原理用手机内软件操控汽车内置硬件、软件,达到远程控制。总线OBD端口智能钥匙 一键启动,手机远程启动 无钥匙进入 升窗 多模式集成一体。

实现远程无距离管控汽车,精准随意,并且可以提前开启空调,冬暖夏凉舒适座驾,手机搞掂。远程控制中控锁,断油,防盗。使用手机APP,智能钥匙、无钥匙进入、一键启动、遥控启动、手机启动、手机熄火、手机开关门锁、手机断油、车辆报警提示、系统防拆除警示等相关操作。移动管家手机控车智能一键启动,车主进入车内时,车内的检测系统识别智能卡,经过确认后车内的电脑才会进入工作状态,轻按动车内的启动按钮正常启动。

自动诊断,行程记录、导航、故障提醒、油耗管理、里程统计、车辆追踪、轨迹查询、

手机操控、空调夏日酷暑预凉 冬日预手机控制。有手机信号的任何地方,

远程启动熄火,预冷预热,冬天提前启动汽车,热车,夏天提前启动汽车预冷,关键的是手机控制全球没有距离限制。

定位找车,实时路况,一键导航找车,都是高大上实用的功能,如果车停在大型停车场,这个功能就大有可为了。

注意事项

  • 具有GPS定位和行驶轨迹查询功能,拨号方式和APP客户端两种方式都能操作

  • 手机远程遥控。无论您的车在哪里,只要有中国移动信号的地方您都可以轻松 启动、熄火、解锁、关锁、定位、预热车辆,提前开暖气、冷气。 即使您忘记带车钥匙,也不必烦恼,只需要一个短信就可以轻松搞定!

  • ❾ 电动汽车的油门控制策略是怎样的

    我感觉电动汽车控制油门的策略应该是,在上坡的时候应该是少加油门,在车多的时候应该是少加油门,在高速上的时候应该是用大油门,这样比较省时省力,还比较省电,这是我感觉的策略。

    ❿ 电动汽车控制器什么样

    1、你们的整车控制策略做的有问题,手刹没松掉,车辆可以启动并行驶,是不允许的。
    2、第一次坏是因为有手刹情况下行驶,导致电机控制器过流,烧坏功率管。
    3、我考虑后两次功率管烧毁是因为过电流,你们整车控制器没做过电流保护吗?而且电机控制器的过电流保护也没做吧(电机控制器是CAN通讯的吗,有故障帧吗,有故障保护策略吗?这些需要确认。)目前来看估计没有做保护策略。这个电机控制器太次,可以考虑换家了。

    热点内容
    甪直房车 发布:2025-05-25 08:46:25 浏览:530
    皮卡的教练档 发布:2025-05-25 08:27:10 浏览:164
    考斯特怎么改房车 发布:2025-05-25 08:25:44 浏览:995
    成都房车露营地数量 发布:2025-05-25 07:56:15 浏览:783
    125越野车怎么换挡 发布:2025-05-25 06:58:14 浏览:51
    天津到坝上自驾游路线 发布:2025-05-25 06:51:42 浏览:265
    皮卡背驮房车自制 发布:2025-05-25 06:47:21 浏览:513
    丰田越野的士头 发布:2025-05-25 06:24:33 浏览:20
    越野车铝合金大梁 发布:2025-05-25 06:03:15 浏览:384
    定向越野基础理论题 发布:2025-05-25 05:52:10 浏览:78