电力电子技术在电动汽车上有哪些应用
㈠ 电力电子技术和电力传动技术都应用在什么地方有什么区别
这个真是太多了,你应该学过电气工程概论这本书,里面介绍的很详细。
像电动机控制,工业控制新能源发电,电力汽车、船舶,电力系统控制。。。。
可以这么说,凡是用到电的地方,他都有应用。
㈡ 电力电子技术应用在哪些场合
一、铁道,电动汽车,航空,航海等交通运输
电气化铁道中广泛采用电力电子技术。电气机车中的直流机车中采用整流装置,交流机车采用变频装置。直流斩波器也广泛用于铁道车辆。在未来的磁悬浮列车中,电力电子技术更是一项关键技术。除牵引电机传动外,车辆中的各种辅助电源也都离不开电力电子技术。电动汽车的电机靠电力电子装置进行电力变换和驱动控制,其蓄电池的充电也离不开电力电子装置。一台高级汽车中需要许多控制电机,它们也要靠变频器和斩波器驱动并控制。飞机、船舶需要很多不同要求的电源,因此航空和航海都离不开电力电子技术。如果把电梯也算做交通运输,那么它也需要电力电子技术。以前的电梯大都采用直流调速系统,而近年来交流变频调速已成为主流。
二、轧钢机,数控机床,矿山牵引等一般工业
工业中大量应用各种交直流电动机。直流电动机有良好的调速性能,给其供电的可控整流电源或直流斩波电源都是电力电子装置。近年来,由于电力电子变频技术的迅速发展,使得交流电机的调速性能可与直流电机相媲美,交流调速技术大量应用并占据主导地位。大至数千kW的各种轧钢机,小到几百W的数控机床的伺服电机,以及矿山牵引等场合都广泛采用电力电子交直流调速技术。一些对调速性能要求不高的大型鼓风机等近年来也采用了变频装置,以达到节能的目的。还有些不调速的电机为了避免起动时的电流冲击而采用了软起动装置,这种软起动装置也是电力电子装置。电化学工业大量使用直流电源,电解铝、电解食盐水等都需要大容量整流电源。电镀装置也需要整流电源。电力电子技术还大量用于冶金工业中的高频、中频感应加热电源、淬火电源及直流电弧炉电源等场合。
三、电力系统
电力电子技术在电力系统中有着非常广泛的应用。据估计,发达国家在用户最终使用的电能中,有60%以上的电能至少经过一次以上电力电子变流装置的处理。电力系统在通向现代化的进程中,电力电子技术是关键技术之一。可以毫不夸张地说,如果离开电力电子技术,电力系统的现代化就是不可想象的。直流输电在长距离、大容量输电时有很大的优势,其送电端的整流阀和受电端的逆变阀都采用晶闸管变流装置。近年发展起来的柔性交流输电(FACTS)也是依靠电力电子装置才得以实现的。无功补偿和谐波抑制对电力系统有重要的意义。晶闸管控制电抗器(TCR)、晶闸管投切电容器(TSC)都是重要的无功补偿装置。近年来出现的静止无功发生器(SVG)、有源电力滤波器(APF)等新型电力电子装置具有更为优越的无功功率和谐波补偿的性能。在配电网系统,电力电子装置还可用于防止电网瞬时停电、瞬时电压跌落、闪变等,以进行电能质量控制,改善供电质量。在变电所中,给操作系统提供可靠的交直流操作电源,给蓄电池充电等都需要电力电子装置。
㈢ 电子技术的应用在哪些地方
第1章 电子技术的概述
1.1 电子技术的发展
随着科学技术的发展和人类的进步,电子技术已经成了各种工程技术的核心,特别是进入信息时代以来,电子技术更是成了基本技术,其具体应用领域涵盖了通信领域、控制系统、测试系统、计算机等等各行各业。
电子技术的出现和应用,使人类进入了高新技术时代,电子技术诞生的历史虽短,但深入的领域却是最广最深,而且成为人类探索宇宙宏光世界和微观世界的物质技术和基础。
电子科学技术是人类在生产斗争和科学实验中发展起来的。1883年美国发明家爱迪生发现了热电子效应,随后在1904年弗莱明利用这个效应制成了电子二极管,并证实了电子管具有“阀门”作用,它首先被用于无线电检波。1906年美国的德福雷斯在弗莱明的二极管中放进了第三电极—栅极而发明了电子三极管,从而建树了早期电子技术上最重要的里程碑。半个多世纪以来,电子管在电子技术中立下了很大功劳;但是电子管毕竟成本高,制造繁,体积大,耗电多,从1948年美国贝尔实验室的几位研究人员发明晶体管以来,在大多数领域中已逐渐用晶体管来取代电子管。但是,我们不能否定电子管的独特优点,在有些装置中,不论从稳定性、经济性或功率上考虑,还需要采用电子管。
集成电路的第一个样品是在1958年见诸于世的。集成电路的出现和应用,标志着电子技术发展到了一个新的阶段。它实现了材料、元件、电路三者之间的统一;同传统的电子元件的设计与生产方式、电路的结构形式有着本质的不同。随着集成电路制造工艺的进步,集成度越来越高,出现了在规模和超大规模集成电路(例如可在一块6平方毫米的硅片上制成一个完整的计算机),进一步显示出集成电路的优越性。按元器件集成度(芯片上所集成的元件数量)分为小规模集成电路(100个元件以上)SSI、中规模集成电路(100—1000个元件)MSI,大规模集成电路(1000—100000个元件)LSI,超大规模集成电路(100000个以上元件)VLSI等四种,现在集成度已达到数千亿。
随着半导体技术的发展和科学研究、生产、管理和生活等方面的要求,电子计算机应时而兴起,并且日益完善。从1946年诞生第一台电子计算机以来,已经经历了电子管、晶体管、集成电路及大规模集成电路、超大规模集成电路,每秒运算速度已达百亿次。现在正在研究开发第五代计算机(人工智能计算机),他们不依靠程序工作,而是依靠人工智能工作。特别是从70年代微型计算机以来,由于价廉、方便、可靠、小巧,大大加快了电子计算机的普及速度。例如个人计算机,它从诞生至今不过经历十多年时间,但是它的发展却跨越了多个阶段,走进了千家万户。集计算机、电视、电话、传真机、音响等于一体的多媒体计算机也纷纷问世。以多媒体计算机、光纤电缆和互联网络为基础的信息高速公路已成为计算机诞生以来的又一次信息变革。未来的人工智能更将给人们的生活与工作方式带来前所未有的变化,随身携带微型计算机已成为一种时尚。
数字控制和数字测量也在不断发展和得到日益广泛的应用。数字控制机床1952年研制出来以后,发展更快。“加工中心”多工序数字控制机床和“自适应”
数字控制机床相继出现。目前利用电子计算机对几十台乃至上百台数字控制机床进行集中控制也已经实现。
由于大功率半导体器件的制造工艺日益完善,电力电子技术已是当今一门发展迅速、方兴未艾的科学技术,应用于中频电源、变频调速、直流输电、不间断电源等诸多方面,使半导体进入了强电领域。
电子水准是现代化的一个重要标志,由于工业是实现现代化的重要物质基础。电子工业的发展速度和技术水平,特别是电子计算机的高度发展及其在生产领域的广泛应用,直接影响到工业、农业、科学技术和国防建设,关系着社会主义建设的发展速度和国家的安危;也直接影响到亿万人民的物质、文化生活,关系着广大群众的切身利益。
为了进一步减小器件体积、提高器件性能,人们不断寻找先进电子材料。现在已经发现的先进的电子材料有:仿生智能材料、纳米材料、先进复合材料、低维材料(量子点、量子线巴基球和巴基管)、高温超导材料和生物电子材料等,先进电子材料正应用于新型电子器件的制造之中。
新型电子材料的问世,将使电子技术向更高层次发展,这些材料将使今后的电子器件具有功能化、智能化、结构功能一体化,使电子器件尺寸进一步缩小,功能更全,运算速度更快,为分子器件、单电子器件、分子计算机和生物计算机打下了基础。
㈣ 电力电子技术在工业及民用中的应用有哪些具体点!
随着电力电子器件的发展,电力电子技术在电机传动领域得到了广泛应用。现代电力传动是电力电子与电机及其控制相结合的产物,其内容涉及电机、电力电子技术、控制理论、现代检测技术等学科,是一项综合性、交叉性学科研究领域。现代电力传动已有30多年的历史,随着新的电力电子器件不断涌现,电力电子装置的形式不断更新,用于电能变换的电力电子装置容量也在不断增大。现在的电力电子和电力传动已用于各个领域,小到一般的家用电器,大到上千千瓦(甚至上万千瓦)的电动机传动或电能变换。凡是电能的产生、输送、变换与控制以及新能源的应用等,都与电力电子和电力传动密切相关,它已成为国民经济发展的重要组成部分。
㈤ 电力电子技术的应用实例有哪些、、、
1、UPS(不间断电源)应用
光伏逆变及其并网等等,再掌握一些控制算法(PID控制,模糊控制,状态反馈控制等等各种吧)的数字实现(DSP),那么就基本掌握一些很实用的强电和弱电相关技能了。
2、直流-直流(DC/DC)变换器
DC/DC变换器将一个固定的直流电压变换为可变的直流电压,这种技术被广泛应用于无轨电车、地铁列车、电动车的无级变速和控制,同时使上述控制获得加速平稳、快速响应的性能,并同时收到节约电能的效果。用直流斩波器代替变阻器可节约电能(20~30)%。直流斩波器不仅能起调压的作用(开关电源), 同时还能起到有效地抑制电网侧谐波电流噪声的作用。
(5)电力电子技术在电动汽车上有哪些应用扩展阅读
电力电子技术应用
1、一般工业
交直流电机、电化学工业、冶金工业
交通运输:
电气化铁道、电动汽车、航空、航天、航海
2、交通运输
电气化铁道、电动汽车、航空、航天、航海
3、电力系统:
高压直流输电、柔性交流输电、无功补偿
㈥ 汽车上有哪些电力电子器件的运用
(一)发动机系统中电力电子技术的应用
目前的汽车中使用比较普遍的用电源除了原有的28V和14V的意外,还新增了42V系列的用电源,尤其是在混合动力汽车当中,所使用的驱动电压值已经达到了288V。
目前的汽车普遍存在着同时使用多种电源的现象,通过电力电子技术可以使汽车中的不同功能都能最大限度的发挥出自身功效。例如,使功率管理和能量管理达到最佳效果,提高其运作的可靠性和效率。
Prius驱动系统是通过带行星齿轮中用于分离动力的机构,把串联式并联式的混合系统进行组合,通过这样的组合方式所形成的系统也就是混合动力系统。该系统主要是由协调控制装置、镍氢电池、升压变换器、逆变器、电动机、发电机以及动力分离系统和汽油发动机组成。电力电子系统对汽车中的发动机和发电机进行了全方面的改进,产生了具有无级变速功能和高效率运转的发动机。
(二)燃油喷射装置中电力电子系统的应用
由电力电子进行控制的燃油喷射装置,其优越的工作性能使之在当前汽车行业中得到了广泛使用。由电力电子进行控制的燃油喷射装置能够最大限度的提高发动机的工作性能,保证发动机在进行功率输出时能够有效的净化空气和节约燃油。由电力电子进行控制的燃油喷射装置中的电子点火装置主要由执行机构、传感器借口以及传感器、计算机等构件组成。电子点火装置通过传感器所传送过来的参数能够对发动机进行准确的判断和运算,并合理的对点火时刻进行调节,最大限度的节约节约燃料,降低对空气的污染。不仅如此,有电力电子技术进行控制的发动机还具有自诊断装置以及智能控制装置和自适应装置等科技化的智能装置。
二、电力电子技术在汽车底盘上的应用
(一)自动变速器中电力电子系统的应用
自动变速器通常可以通过对发动机的工作状态、车速、转速、载荷以及各种发动机工作中的各种参数的判断与计算,整合后对变速杆的位置进行自动化的改变,从而合理的控制变速器的换挡工作,使变速器达到最佳换挡时间和最佳档位。可见,电力电子技术的应用提升了自动变速器的灵敏度和加速性能,同时还能对道路条件和车辆行驶负荷做出正确的判断。
(二)电子稳定控制系统
电子稳定控制系统具有功能全面的特点,同时对各种功能进行了改进。电子稳定控制系统不同于普通控制系统,它在对汽车驱动轮进行控制的同时,也能够对从动轮进行有效的控制。电子稳定控制系统可以根据角速度传感器、加速度传感器以及轮速传感器的运作情况,有效的监控车辆的状态。当车轮与地面的附着力减小时,车辆极易发生侧滑事故,这时电子稳定控制系统便会对车轮做出相应的控制,减小发动机的输出功率,从而保证车辆按照预定的方向行驶,实现车辆的可控性课方向稳定性。
三、电力电子技术在可变电压系统中的应用
(一)可变电压系统概括
汽车制造业利用电力电子技术对变压器进行了改良,将可变压系统取代了电池电压的转换方式。为了保证发动机系统的能量流向与结构能够保持一致,在原有系统的基础上,可变电压系统采用了升压变换器,从而解决了原有系统体积大、能量损耗多的现状,优化了整个系统的性能。在电动机和发电机并存的混合动力系统中,电动机所获得的功率主要来自于发电机,只有少部分的功率是来自于电池。当电动机的功率达到五十千瓦时,发电机的供电功率则为三十千瓦,电池可解决的功率则为二十千瓦。通常情况下,电池会给升压变换器提供所需的功率,在升压变换器的容量较小时,电池则能够满足其所需要的功率。
(二)车身电子控制设备
电力电子技术在汽车车身的设计中也具有广泛的应用范围,例如汽车本身的通信功能、娱乐性、舒适性、方便性和视野性等方面的设计。目前,电力电子技术在车身设计中的应用主要在于电力电子技术的应用在很大程度上满足了客户对车身个性方面的要求。同时还提供了先进的信息系统,例如,环保设计系统、四十二伏电子系统以及对车辆的遥控检测和智能防盗系统等。这些改进都体现出了电力电子系统对当今社会汽车的发展所产生的巨大推动力。
(三)对可变压系统的控制
可变压系统能够根据发电机和电动机实际的运作情况,最大限度的降低系统的损耗。电动机系统的损耗主要包括升压器损耗、开关损耗、逆变器损耗以及电动机损耗。
1、电动机损耗
在电动机线圈中流过的电流越小,对电动机多造成的损耗也就越小。当电动机所产生的感应电压无法达到系统电压时,则会在很大程度上增加电流量,因此,所设定的系统电压必须高于感应电压。
2、逆变器损耗
逆变器中所产生的的损耗主要是指开关元件运作时所产生的损耗。当开关元件所产生的电流越小时,电压也会随之降低,所产生的电流损耗也就越小。当逆变器中的电流达到最小值时,就无法使发电机转换为弱场控制的状态,这一情况也同样存在于电动机的损耗过程中。
3、升压变换器损耗
在升压变换器中,当电流越小时,所产生的电压也就越低,电流的耗损程度也就越小。通常情况下,电池所产生的电流与升压变换器所产生的电流是一致。当系统中的电流所产生的电流最小时,逆变器损耗和电动机损耗也随之达到了最小值。
由此可见,要想使系统损耗达到最小,则必须保证电动机所产生的感应电压和系统电压的功率一致。通常情况下了,感应电压会根据电动机的转距和转速产生相应的变化,因此,从电动机的工作状况着手,对系统电压进行合理的控制便能在很大程度上降低电流损耗。
电力电子技术在汽车领域的应用,在很大程度上促进了汽车行业的发展,为汽车各方面的制造与使用提供了先进的技术手段,在汽车制造业中,人们已经逐渐摒弃了传统的运作模式与控制系统,取而代之的是由电力电子技术进行控制的设备与系统,其优越的工作性能使之在当前汽车行业中得到了广泛使用。
㈦ 电气传动技术在各个领域的应用
电气传动技术的特点及展望
1 引言
电气传动技术是指用电动机把电能转换成机械能,带动各种类型的生产机械、交通车辆以及生活中需要运动物品的技术;是通过合理使用电动机实现生产过程机械设备电气化及其自动控制的电器设备及系统的技术总称[1]。一个完整的电气传动系统包括三部分:控制部分、功率部分、电动机。
电气传动技术是电力电子与电机及其控制相结合的产物,内容涉及电机、电力电子、控制理论、计算机、微电子、现代检测技术、仿真技术、电力系统、机械、材料和信息技术等多种学科,是这些学科交叉融合而形成的一门新型的综合性学科。对于位置控制(伺服)系统,也称为运动控制。
电气传动技术诞生于20世纪初的第二次工业革命时期,电气传动技术大大推动了人类社会的现代化进步。它是研究如何通过电动机控制物体和生产机械按要求运动的学科。随着传感器技术和自动控制理论的发展,由简单的继电、接触、开环控制,发展为较复杂的闭环控制系统。20世纪60年代,特别是80年代以来,随着电力电子技术、现代控制理论、计算机技术和微电子技术的发展,逐步形成了集多种高新技术于一身的全新学科技术一现代电气传动技术。2 电气传动的主体电动机
电动机分为交流电动机和直流电动机。二者的结构、工作原理不同,所需的电气传动装置也不同。电气传动可分为两类:直流电气传动和交流电气传动。由于历史上最早出现的是以蓄电池形式供电的直流电动机,所以直流传动也是唯一的电气传动方式。直到1885年意大利都灵大学发明了感应电动机,而后出现了交流电,解决了三相制交流电的输变问题交流电气传动才出现。20世纪80年代之前,直流电气传动在高性能的电气传动领域占绝对统治地位。此后,随着电力电子技术和计算机控制技术的发展,以及现代控制理论的应用,交流电气传动得到了快速发展,静动态性能可以与直流电气传动相媲美。因此交流电气传动在高性能的电气传动领域所占比例逐年上升,目前已处于主导地位。
2.1 直流电动机传动
直流电动机的转速n的表达式为 式中:Ua 电动机电枢两端的电压;Ia 电动机电枢回路电流;R 电动机回路电阻;Ke 电动机电势常数;φ 电动机励磁磁通。
直流电动机的调速方式有三种:一是调压调速,即保持R和φ不变,通过调节Ua来调节n,是一种大范围无级调速方式;二是弱磁升速,即保持R和Ua不变,通过减少φ来升高n,是一种小范围无级调速方式;三是变电阻调速,即保持Ua和φ不变,通过调节R来调节n,是一种大范围有级调速方式。对于要求大范围平滑调速的直流电气传动系统来说,调压调速方式最好。而且现代工业企业的低压供电系统多数采用交流供电,通过可控变流装置即可提供可调的直流电压信号,所以直流调压调速方式应用最广泛。在电力电子变换器中,用于控制直流电机的主要是由全控器件组成的斩波器或PWM变换器,以及晶闸管相控整流器。
直流电气传动控制技术的发展经历了以下演变过程:开环控制→单闭环控制→多闭环控制;分立元件电路控制→小规模集成电路控制→大规模集成电路控制; 模拟电路控制→数模电路混合控制→数字电路控制;硬件控制→软件控制。
2.2 交流电动机传动
交流电动机分异步电动机和同步电动机两大类。按照异步电动机的基本原理,从定子传入转子的电磁功率Pm可分为两部分:一部分是拖动负载的有效功率P1=(1-s) Pm,另一部分是转差功率Ps=sPm。转差功率是评价调速系统效率高低的一种标志,因此交流异步电动机调速方式分三类:一是转差功率消耗型调速, 即把全部转差功率转化成热能消耗掉。该调速方式结构简单,但效率低,而且转速越低,效率越低;二是转差功率回馈型调速,即转差功率的一部分转化成热能消耗掉,大部分则通过变流装置回馈电网或转化为机械能予以利用。该调速方式结构复杂,但效率比第一类高;三是转差功率不变型调速,即无论转速高低,消耗的转差功率基本不变。该调速方式结构复杂,但效率最高。在异步电动机的各种调速方式中,效率最高、性能最好、应用最广泛的是变压变频调速方式。它是一种转差功率不变型调速,可以实现大范围平滑调速。
同步电动机没有转差,当然也没有转差功率,所以同步电动机调速只能是转差功率不变型调速。而同步电动机转子极对数固定,因此只能采用变压变频调速方式。
交流电气传动控制模式的发展经历了以下演变过程:转速开环的恒压频比控制→转速闭环转差频率控制→矢量控制→解耦控制→模糊控制;分立元件电路控制→小规模集成电路控制→大规模集成电路控制;模拟电路控制→数字电路控制;硬件控制→软件控制。3 现代电气传动的物质基础一电力电子器件
电力电子技术是现代电气传动的基石,其直接决定和影响着现代电气传动的发展。如果把计算机比作现代生产设备的大脑,电力电子器件及功率变换装置则可视为支配手足(电机)的肌肉和神经,因此,电力电子变换器是信息流与物质/能量流之间的重要纽带[2][3]。
1957年世界上第一只晶闸管(SCR)的问世标志着电力电子学的诞生,从此,电力电子器件的发展日新月异。从20世纪60年代第一代半控型电力电子器件一晶闸管(SCR)发明至今,已经历了第二代有自关断能力的全控型电力电子器件 CTR,GTO,MOSFET,第三代复合场控制器件一IGBT,SIT,MCT等和正蓬勃发展的第四代模块化功率器件一功率集成电路(PIC),如智能化模块IPM和专用功率器件模块ASPM等。这为交流传动实现高性能控制提供了必需的变频装置。电力电子器件的每一次更新换代,都会引起功率变换装置和交流传动性能的迅速提高,它们相互竞争、相互促进,向高电压、大电流、高频化、集成化、模块化、智能化方向发展,并逐步在性能和价格上可以与直流传动相媲美,而且在某些方面实现了直流传动所不能达到的高性能。
交流传动在实现节能和获得高性能的同时,也带来了诸如电网功率因数降低、谐波和电磁干扰等“污染”。另外,随着容量的增加,功率变换器的体积增大。为了解决这些弊端,1964年,A.Schonug率先将通信系统的脉宽调制(PWM)技术应用于交流电气传动,使变频器由传统的相控电流型逆变器、电压型逆变器发展到脉宽调制(PWM)型逆变器,大大缓解了对环境的“污染”,减小了变频器的体积,简化了变换装置的控制,为近代交流传动开辟了新的发展领域。目前,常用的交流PWM控制技术有:以输出电压接近正弦波为其控制目标的基于正弦波对三角波脉宽调制的SPWM控制和基于消除指定次数谐波的HEPWM控制;以输出正弦波电流为其控制目标的基于电流滞环跟踪的CHPWM控制;以及以被控电机的旋转磁场接近圆形为其控制目标的电压空间矢量控制(SVPWM控制)。电力电子器件及其功率变换装置在交流传动的发展中起着非常关键的作用,可以说没有电力电子技术的发展,就没有今天高性能的电气传动技术。4 电气传动自动化技术发展总趋势及主要的发展方向
电气传动自动化技术发展总趋势是:交流变频调速逐步取代直流调速、无触点控制取代有接点逻辑控制、全数字控制与数模复合控制并存。电气自动化技术的发展是由用户的需求和相关学科的技术发展所推动的,他直接涉及改善电气传动的性能、价格、尺寸、能源消耗与节约设计,调试等方面。其主要发展方向有:
4.1 实现高水平控制
电气传动自动化技术基于电动机和机械模型的控制策略,有矢量控制、磁场控制、直接转矩控、现代理论的控制策略,有滑模变结构技术、模型参考自适应技术、采用微分几何理论的非线性解鲁棒观测器,在某种指标意义下的最优控制技术和逆奈奎斯特阵列设计方法等;基于智能控制思想的控制策略,有模糊控制、神经元网络、专家系统和各种各样的优化自诊断技术等。以高速微处理器RISC( Reced Instruction Set Computer )及高速DSP(DigitalSignal Processor)为基础的数字控制模板处理速度大大提高,有足够的能力实现各种控制算法,Windows操作系统的引人可自由设计,图形编程的控制技术也有很大的发展。
4.2 开发清洁电能的变流器
所谓清洁电能变流器是指变流器的功率因数接近1,网侧和负载侧有尽可能低的谐波分量,以减少对电网的公害和电动机的转矩脉动。对中小容量变流器,提高开关频率的PWM控制是有效的;对大容量交流器,在常规的开关频率下,可改变电路结构和控制方式,实现清洁电能的变换。
4.3 系统化
电气传动自动化的发展与其相关技术的发展是分不开的。电气传动自动化技术的发展是将电网、整流器、逆变器、电动机、生产机械和控制系统为一个整体。从系统上进行考虑。例如要求和上位控制的可编程控制器通过串行通信连接,一般都带有串行通讯标准功能(RS-232、RS-485),此外还通过专用的开放总线方式运行。
4.4 CAD技术
模拟与计算机辅助设计技术(CAD)、电动机模拟器、负载模拟器以及各种CAD软件引人对变频器的设计和测试提供了强有力的支持。
4.5 缩小装置尺寸
紧凑型变流器要求功率和控制元件具有高的集成度,其中包括智能化的功率模块、紧凑型的光耦合器、高频率的开关电源,以及采用新型电工材料制造的小体积变压器、电抗器和电容器。功率器件冷却方式的改变(如水冷、蒸发冷却和热管)对缩小装置的尺寸也很有效。现在主回路中占发热量50%-70%的IGBT的损耗已大幅度减少,集电极一发射极的饱和电压(Vcesat)大为降低,现已开发出了第4代IGBT:目前,国外已研制成功高密度Building Block(系统集成)。
㈧ 电力电子技术的应用领域主要有哪些
电力电子技术主要应用(根据适用场合分类):
石油、煤炭等开采行业电控设备:
主要设备,晶闸管直流电动机系统;变频器和交流调速系统。
市场前景,石油、煤炭等不可再生资源逐渐减少,但是我猜测未来几十年内还会继续。只要需要挖石油、挖煤、挖金子就有电力电子技术的市场。
2.电动汽车领域:
主要设备,一是本身电动汽车上的设备(控制器等),二是充电桩,三是测试系统。
市场前景,由于中国政府大力支持,目前电动汽车市场颇为看好。
对用电要求较高的场合,例如银行、证券交易所的计算机系统;网络服务器、路由器等关键设备;各种医疗设备;办公自动化设备;工厂自动化机器。
主要设备,UPS(不间断电源)。
市场前景,已经成熟,应该在后面几十年内继续保持稳定增长。