推挽电路电动汽车
❶ 新能源汽车DCDC如何工作
DC/DC 变换器,作为电动汽动力系统中很重要的一部分,它的一类重要功用是为动力转向系统,空调以及其他辅助设备提供所需的电力。另一类,是出现在复合电源系统中,与超级电容串联,起到调节电源输出,稳定母线电压的作用。
3 配合超级电容应用的DCDC怎样确定电气参数?
在复合电源系统中,超级电容一般都被定义成应对大功率的部分,放电过程,针对工况峰值,提供均值以上的部分;制动能量回收过程,承担全部或者绝大部分回收电流的吸纳。面对冲击功率,DCDC在两个方面的要求比较高。一个是反应速度,电池与超级电容并联的电源回路中,制动能量从电机产生,通过母线向电源传递。如果DCDC的反应不够灵敏,接通时间较长,则涌来的能量被DCDC隔离在超级电容以外,得不到吸纳,只能由电池吸纳,过大的功率会给电池带来永久性的损伤。DCDC的另一个要求就是能够承受瞬时大功率的冲击,串联在电容回路的DCDC,需要经常面对冲击功率的工作状态。因此,选择与超级电容串联在统一支路的DCDC,最重要的参数就是功率范围,工作电压和动作时间。
本文整理自下列文献和互联网公开资料:
1 邹捷,电动汽车移相全桥DC_DC变换器研究;
2 陈建龙,电动汽车的双向DC_DC变换器的研究 ;
3 王必荣,纯电动汽车双向DC_DC转换器的设计与研究;
4 张智平,电动汽车DC_DC变换器的研究与设计;
5 李慧,车用DCDC综述;
6 纵卫卫,电动汽车DC_DC变换器电磁干扰优化研究;
(图片来自互联网公开资料)
❷ 用电动车充电器的变压器。给制一个高频变压器行吗
只要不是老式的充电机里面的铁芯变压器,它本来就是高频变压器,尽管制作就是。
❸ 新能源汽车逆变器是怎么工作的
车载逆变器、是一种能够将 DC12V直流电转换为和市电相同的 AC220V交流电,供一般电器使用,是一种方便的车用电源转换器。车载电源逆变器在国外市场受到普遍欢迎。
在国外因汽车的普及率较高,外出工作或外出旅游即可用逆变器连接蓄电池带动电器及各种工具工作。中国进入WTO 后,国内市场私人交通工具越来越多。
车载逆变器电源作为在移动中使用的直流变交流的转换器,会给你的生活带来很多的方便,是一种常备的车用汽车电子装具用品。
选购须知:
首先要注意看规格,因为配套不同功率的电器设备需要用不同规格的逆变器,因此在选择时要先知道自己是多用在哪些电器上。
不然买个40W规格的逆变器,却发现某个汽车电器用品需要100W的电源,启动都成问题了。此外购买车载逆变器,要确认逆变器的各种保护功能,因为汽车电源本身就是不稳定。
逆变器没有提供保护功能的话,当电器产品接上逆变器,很容易就会使坏电器。一般来说,车载逆变器根据输出电流的波形分为两种,一种是方波转换器,一种是正弦波转换器。
❹ 电动车48v转12v 简单电路图输出电流12~15A
用SG3525或TL494驱动MOS的推挽电路,别的电路可能难,电流太大了,不用隔离,稳压简单,过流保护有点难。
❺ 我点电动车待电时间短,求是否还能修复……
那就要看你用什么样的充电器了、。只有三段式智能推挽式充电器可以修复电池。其他的充电器几乎不可能,去电池售后做维护加液的话你的电池可能会回复,但同样也可能就从此报废了。建议你去找一个三段式的充电器充上一天一夜,绿灯也不要拔。应该会好的。我试过的,不过是无意充了三天忘了拔,但是电池是真的好了。
❻ 请问哪位朋友有电动摩托车的充电器电路图谢谢
电动自行车充电器
给电动车辆的铅酸电瓶、镍镉电瓶补充能源,要通过充电器进行。充电器的种类很多.一般以有无工频变压器区分可分为分两大类。大功率的普遍采用环牛工频变压器.虽然效率低,但是电流大(可到30A)、可靠。货运电动三轮无一例外地使用它,而30Ah以下的电瓶则大多采用开关电源技术,这样便提高了效率,甩掉了笨重的工频变压器。电动自行车充电器最大充电电流大多在2A左右。
1.采用开关电源技术的电动自行车充电器
(1)山东GD36充电器
电路原理图见图12所示。该充电器为半桥式充电器.主要性能指标为:输入电压:170-260V;输出电压:44V(可调);最大充电电流:1.8A;浮充充电电流:200~100mA。
1)电路原理
本充电器电路主要由市电整流滤波、自激加他激半桥转换、PWM控制、电压控制、电流控制、输出整流滤波六部分组成。
整流滤波市电220V/50Hz经二极管D1~D4桥式整流、电容C5~C7滤波,得到310V左右的直流电压,作为开关变换器的电源。
自激加他激半桥输出电路主要由Q1、Q2、B2、B3等元件组成。
自激启动该电路的特点是自激启动,控制电路所需辅助电源由其本身提供,无需另设。自激振荡是利用磁心饱和特性产生的,具体过程为:接通电源,C5、C6上的150V电压经R5、R7、R9、R10给开关管Q1、Q2提供基极偏压。设Q1由TR5偏压而微导通,则推动变压器B2的②-④绕组感应出极性是②脚正、④脚负的电压,于是①-②绕组感应出①脚正、②脚负电压加到Q1的发射极,加速Q1的导通。这是一个十分强烈的正反馈过程,Q1迅速饱和导通。与此同时,③-⑤绕组感应出③脚正、⑤脚负的电压,使Q2截止。
Q1饱和导通后,150电压给B3①-②主绕组充电储能,线圈中的电流和由它产生的磁感应强度随时间线性增加。但当磁感应强度增大到饱和点Bm时,电感量迅速减小,Q1的集电极电流急剧增加,增加的速率远大于其基极电流的增加,Vce升高,于是Q1退出饱和进入放大区,推动变压器B2的②-④、①-②、③-⑤绕组感应电压将反向。这又是一个强烈的正反馈过程,结果是Q1截止、Q2饱和导通。此后,这种过程重复进行而形成振荡。
工作原理如下:
他激振荡:自激振荡过程中,B3的次级输出电压经D9、D10全波整流、C19滤波,建立起PWM控制电路芯片TL494所需的工作电源。TL494开始工作,由Q3、Q4输出相位差为180°的PWM脉冲,经B2⑥-⑦、⑦-⑧绕组感应至①-②或③-⑤绕组。于是Q1、Q2便由自激转为在他激PWM脉冲驱动下轮流导通。B3的次级⑨-⑦、⑨-⑧绕组输出电压经D15全波整流、C21滤波得到+44V电压给蓄电池充电。
D6、D7是两只钳位二极管.保护开关管Q1、Q2。保护机理是泄放B3初级的反激能量和漏感储能,消除反峰电压。当Q1由导通变为截止而Q2又尚未导通时,D7导通,把反激能量再生给C6充电;当Q2由导通变为截止而Q1又尚未导通时,D6导通,把反激能量再生给C5充电。这样,一方面消除了反峰电压,另一方面因反激能量回送电源而极大地提高了电源的效率。
PWM控制以TL494为核心组成。C12、R19与内部电路形成振荡,当这两只阻容元件参数为图标数值时,振荡频率约为50kHz。(13)脚接+5V,脉冲输出方式被设置为推挽输出。⑧、(11)脚输出的推挽调宽脉冲,经驱动电路放大后送半桥输出级,控制Q1、Q2轮流导通。
R20、R24分压值设定死区控制端④脚的电位,限定最大导通占空比小于45%。C18是缓启动电容,接通电源后,C18两端电压为零,④脚的电位近似为+5V,输出脉冲占空比为零。随着C18的充电,④脚电压逐渐降低,导通占空比逐渐增大,输出电压逐渐受控。
电压、电流控制:R26和R27是电压负反馈取样电阻,R26与R27分压,对输出电压进行取样,加到TL494的①脚进行电压控制。R3是电流取样电阻,取样电压经R13加到TL494的(15)脚进行电流控制。电流控制的实质也是控制输出电压。
推挽驱动:由Q3、Q4、B2等元件组成。这是一种典型的变压器推挽式功率放大电路。D11、D14的作用与D5、D7相似,保护Q3、Q4,把B2初级的反激能量回送电源。
充电状态指示主要由运放LM358、LED1、LED2等元件组成。当充电电流较大时,电流取样电阻R3上端电压大大低于地电位,LM358的②脚电位低于③脚电位,①脚输出高电平,电池充电指示灯LED1点亮;当充电电流较小(小于200mA)时,+5V经R36、R30、R3分压,R3上端电压略高于地电位,LM358②脚电位高于③脚,①脚输出低电平,电池充电指示灯LEDl熄灭,⑦脚输出高电平.在充满后指示灯LED2点亮。充电过程中的某一期间存在LEDl、LED2同时点亮的过渡状态。
2)调试
输出电压开路输出电压为44V,改变R26或R27可校准此值。夏天电压应比44V低1V,如果是胶体电池电压还要低,否则可能会充鼓包。
输出电流短路时输出电流为1.8A,改变R13可校准此值。
状态指示调试当充电电流为200mA时,蓄电池充满指示灯LED2应开始点亮。改变R30可校准该状态。
3)小结
很多半桥式充电器,以TL494为核心,结构十分类似,TL494内部包含了振荡、锯齿波形成、PWM、运放等基本单元电路,稳压和限流反馈都加到运放端。另以一块比较器集成电路为辅助,进行电流分段控制,这些集成电路工作需要电源、通电起始、启动电路工作为它们供电,然后由辅助电源逐步建立稳定的电源,为这些集成电路工作提供能量。
这些充电器有些故障类同,例如空载有较低输出电压,带负载输出消失。多数是TL494损坏,或者供电电路有故障。空载有输出说明自激正常,但是没有建立起正常的控制系统,带负载自激条件被破坏停振,输出电压消失。
对于空载无任何输出的半桥式充电器,在保险管损坏的情况下,首先怀疑两只开关管是否击穿,在更换NPN管的同时,检查2.2Ω等周边元件是否损坏。更换零件后通电检查,仍然空载,但要在市电输入端串联一只普通的100W白炽灯泡,当开机时,白炽灯泡闪亮一下变暗,同时半桥式充电器各种发光管正常发光,说明基本修好了,可以进行其他项目了;如果白炽灯泡常亮不变暗,说明充电器有其他故障。
有一类开关管的损坏原因是TL494完好,正向通道往后直到开关管正常。但是稳压反馈系统有问题。TL494输出到开关管的脉冲占空比失控(增加),造成开关管的损坏。因此,最好在换开关管后,用稳压电源给集成电路供电,模拟改变稳压反馈系统反馈电压,用示波器观察占空比是否相应变化。
维修充电器安全问题很重要,一定要搞清楚电路中哪里带市电,哪里不带市电再下手,不要带电触摸内部线路和零件。用万用表测试时,要拔掉蓄电池和市电插头,对电容放电后再进行,对滤波电容放电可用普通白炽灯泡进行。
充电器的调整很重要,直接影响电池使用寿命。以12V电池为例,浮充电压13.5V~13.9V可长期进行,一般输出电压不要超过14.2V,否则易使电池失水。需要提醒的是:在控制充电压时胶体电池电压应低一些;夏天电压应低一些,降低幅度为每格(12V电池为6格)每℃4mV。维修充电器,关键是找到电压负反馈的电压取样电阻。熟练掌握减小取样电阻上半部分电阻值,输出电压降低;增大取样电阻上半部分电阻值,输出电压升高。或者反过来,减小取样电阻下半部分电阻值,输出电压升高;增大取样电阻下半部分电阻值,输出电压降低的方法。其次是找到充电电流取样电阻,以及电流检测比较器,掌握改变各阶段充电电流的方法。
参考地电位,在分析电流检测比较器电路时十分重要。这是因为充电器电流检测比较器的集成电路是单电源供电,比较器的一端接地,比较器的另一端接取样电阻,而取样电阻上的电压一般为负电压。
(2)石家庄某公司单激式充电器
充电器的原理图见图13。单激式充电器启动电路和半桥式不同,一般直接取自市电整流滤波后的平滑直流电,集成电路也以UC3842、UC3845和UC3844N为主,也有采用电路更加简洁的三端开关式TOP226集成块,UC38xx是电流控制PWM单输出专用芯片。广泛用于电脑显示器电源、电动车充电器等电源类产品。
UC38xx和TL494类似,内部含有振荡器(OSC),误差放大器、脉宽调制(PWM),参考电压产生等PWM专用芯片必备的内电路。还具有三个特点,图腾柱式输出电路,输出电流可达1A,可直接驱动功率开关VDMOS管:具有内部可调整的参考电源。可以进行欠压锁定;这个带锁定的PWM,可以进行逐个脉冲的电流限制,也叫逐周(期)限制。
图13中R18、D5、N5等组成启动和供电电路。加电瞬间。市电整流滤波后的平滑直流电通过R18给UC3845⑦脚以启动供电,此时D5反偏截止。UC3845工作后,开关变压器各绕组有感应电压,副绕组电压经D4整流供N5进行稳压,D5导通,给UC3845提供稳定的工作电压,完成启动和供电。图中LM393是一个变形的施密特电压比较器,用作市电过压保护,当市电过压时,比较器翻转,①脚呈低电平,D3导通将UC3845关闭。输出稳压的负反馈系统由光电耦合器、基准电源N6、RV1、R27、R26、R23等组成。稳压过程:输出电压由于某原因上升时,流经光电耦合器发光二极管电流增加,光强增加,光电耦合器光电三极管加剧导通。内阻减小,使UC3845的②脚电压升高,减小PWM占空比,拉低输出电压。反之,增大PWM占空比,使输出电压拉高,起到自动稳定输出电压的作用。
1)过流(过载)保护
开关管过流信号取自电阻R3、R4。一旦开关管过流,UC3845的③脚电压超过1V,内部电路就会关闭输出,实现过流(也叫过载)保护。增大取样电阻,就是降低了起控电流的动作点,电源输出功率也相应减小。
2)过压保护
电源输出端的LM339四个电压比较器A、B、C、D反相端电位均固定在+5V。A和B检测输出电压,当输出端电压较低时即充电初始阶段,A的②脚为低电平,低压灯LOW亮,B的①脚也为低电平,高压灯HI也亮;当充电电压升高时。A翻转,低压灯LOW熄灭,高压灯HI继续亮,当电池将充满时,电池电压升高,B翻转,①脚为高电平,高压灯HI熄灭。同时,C的(13)脚为高电平,D的(14)脚也为高电平,N7导通,J1吸合,J1-1(常闭)断开将取样电阻R4接入,增大了电流取样电阻,开始起控使输出电流下降,进人浮充电阶段。N4、W1、R8、R7构成12V稳压电源,为12V的继电器提供电源。
(3)天能TN-1智能负脉冲充电器
图14是天能TN-1智能负脉冲充电器电路图。这个充电器主要部分是典型的半桥式两段充电器,和前面介绍的图12充电器基本一样。这里主要介绍负脉冲充电部分的工作原理。这部分电路由放电开关、负脉冲加载控制、脉冲振荡器三部分组成。
放电开关是三极管Q6、Q6导通,其集电极和发射极将电瓶短路,电瓶放电。Q6截止,电瓶恢复充电。Q5和Q6是直接耦合,俗称达林顿管。Q6受加载负脉冲控制和振荡器联合控制。加载负脉冲控制由IC3的C和D构成。D接成反相器(电路中,与非门两个输入并联看作一个非门),只有C的两个输入都为高电平时,③脚为低电平,经D反相使Q6导通,给电瓶放电。C的②脚来自多谐振荡器的每秒1个(脉宽3ms)正脉冲,C的①脚来自两阶段电流检测电路IC2的①脚,恒流充电时①脚为高电平。此时,负脉冲才起作用。
脉冲振荡器由IC3的A和B以及C24、C25、两只100kΩ电阻构成典型的多谐波振荡器,其充放电时间常数不同,高电平3ms,低电平1250ms。负脉冲充电,可提高充电接受能力,降低充电温度;国内还有可以消除硫化延长电瓶寿命的讲法。上述充电器在放电时,并没有断开充电电路。
后面还有好多,图片只能插入一个,给你个地址自己看吧:
http://www.dzjs.net/html/dianziDIY/2008/0623/3189.html
❼ 电动车(48v)充电原理图解说
充电器.一插上电源,充电器一点反应都没有.但储能电容还有电,如果不及时在这里放电的话,还会让你心惊肉跳一下,很难受。
首先确定13007是否好,测二个管子的中点电压是否是150V,是150V就是电容68UF/400V到大变压器电路之间有问题。不是150V就是二只240K启动电阻有一只坏了。大部分是后一种情况。如果是3842的电路一般是启动电阻变的无穷大,那两个2.2欧姆的电阻也要检查。
TL494充电器原理与维修
电动自行车充电器多采用开关 电源,型号虽多,但电路结构大同小异,主要区别在于所选的脉宽调制(PWM)芯片不同如(UC3845、UC3842、SG3524、TL494)。常用电动车充电器根据电路结构可大致分为两种。第一种充电器的控制芯片一般是以TL494为核心,推动2只13007高压三极管。配合 LM324(4运算放大器),实现三阶段充电。还有一种是以uc3842驱动场效应管的单管开关电源,配合LM358双运放来实现三阶段充电方式。
一、电路原理
根据实物测绘的佳腾牌充电器电路原理如图1所示。整机可分为PWM产生和推动电路、功 率开关变换电路、充电状态指示电路和交流输入电路四个部分。
1.PWM产生和推动电路
PWM产生电路由IC1TL494和外围元件构成。TL494是PWM开关电源集成电路。引脚功能和内 部框图如图2所示。
IC1的第5、6脚外接的C10、R19是定时元件,决定锯齿波振荡器的振荡频率,F=1.1/RC, 按图中数值为50KHz。第14脚是+5V基准电压输出端,除芯片内部使用外,还直接或分压后供第2、4、13脚和IC2使用。第13脚为输出方式控制端 ,该脚接低电平时为单端输出方式,图中接第14脚+5V高电平,为双端输出方式。第4脚为死区电压控制端,该脚电压决定死区时间。电位升高 ,死区时间延长,输出脉宽变窄,当电压大于锯齿波电压时,输出脉宽将变得很窄,甚至停振。凡输出端采用全桥或半桥式的开关电路,都要 正确设置死区时间,以免两个开关管同时导通,发生电源短路的危险。图中该脚电位由基准电压经R24和R20分压取得,实测电压为0.46V。第1 、2脚和第16、15脚是IC1内部的两个电压比较器的正、反相输入端,分别用作充电电压取样和充电电流取样。+44V充电电压经R28、R27和R26分 压反馈至第1脚。C15是软启动电容。第2脚电位由基准电压经R23和R3分压取得,实测为3.2V。第1脚电压越高,输出脉宽越窄,充电电压越低; 反之脉宽增宽,充电电压升高。从而实现+44V充电电压的目的。Ra是充电电压调试电阻,Ra和R26并联值越小,充电电压越高。R29是脚充电电 流取样电阻,由该电阻上取得的电压变化,经R13送入IC1的第15脚。充电电流越大,第15脚电位越低。当第15脚电位低于第16脚(接地)电位 时,IC输出端将被封闭,从而实现过流保护。Rb是过流保护调试电阻,本机予设为1.8A。
外部输入信号的变化,经片内电路处理后,由8、10脚输出一对大小相等,相位相差180 度,脉宽可变的方波,经V3、V4推挽放大后,由变压器T2耦合至功率开关变换电路。
2.功率开关变换电路
V1、V2两个开关管串联接在+300V供电电压和地之间,组成半桥式开关电路,在调宽脉冲 的作用下,轮流导通和截止,将+300V直流转换为高频交流电。电流流向示意图如图3所示。V1导通时,C5+→V1ce→T2的2、4端→T3的2、1端→ C6→C5-。V2导通时,C5+→C4→T3的1、2端→T2的4、2端→V2ce→C5-。T3次级输出电压经D15、C17全波整流滤波,输出+44V供蓄电池充电。T3 次级另一绕组经D、D10、C18整流滤波,输出+24V向IC1和IC2供电。
R7、R是启动电阻,在开机瞬间向V1、V2基极提供激励电流,使电路自激启动。
C7、D5、R4或C8、D8、R11)是加速网络。D6、D7为保护二极管。C3、R1为尖峰吸收网络 。
3.交流输入电路
220V市电经D1-D4桥式整流、C5滤波,取得+300V电压,向功率开关变换电路供电。
4.充电状态指示电路
由IC2(HA17358)和双色发光管LED2构成。IC2是双运放集成电路,这里接成两个电压比 较器。由充电电流取样电阻R29取得的电压变化信号,经R31送入IC2的第2脚。充电初期,充电电流较大,R29上电压增大(注意:R2上的电压对 地为负电压),第2脚电位低于第3脚电位,第1脚输出高电平,充电指示灯LED2-A点亮。当电池接近充满时,充电电流减小,R29上的电压也降 低,当第2脚电位高于第3脚电位时,第1、6脚变为低电平,第7脚输出高电平,充满指示灯LED2-B点亮。
Rc是充电状态指示调整电阻,选用适当的阻值接入,使之达到设定的指示状态(200mA) 。
二、检修方法
本机有热地和冷地之分,测量时 不要选错参考点。热地和市电相通,若加电检修,应加隔离变压器,以防触电。多数情况下,使用万用表的电阻档就能找到故障元件。检修PWM 电路用外接电源(即在+24V滤波电容C18两端外接15-20V稳压电源)最为安全有效。
加电试机,正常情况下,LED1应 点亮。+44V端不接负载时,充电指示LED2-B应亮(绿色),+44V略有下降,实测为+44V不要误为故障。接入假负载时(可用1000W电炉丝代)充 电指示LEED2-A应亮。
1.保险烧断、玻璃管内壁发黑或 炸裂
此现象说明电路有严重短路之处 ,以滤波电容C5、市电整流管D1-D4、开关管V1-V2、整流管D15等多个元件同时击穿多见。用万用表电阻档在路即可找出故障元件。
2.电源指示灯LED1不亮,无+44V 电压输出
此现象说明电路没有工作,在 +300V电压输出正常的情况下,应重点检查启动电阻R7、R9有无断路,V1、V2基极回路元件D5、R4、R6、D8、R11、R8损坏,IC1、V3、V4损坏而 无调宽脉冲输出。
外接电源,用示波器测IC1第5脚 ,应有正常的锯齿波形,若定时元件R19、C10正常而无波形,可判定IC1损坏。IC1的8脚和11脚应测得正常方波,当测其无波形或波形不正常时 ,若各脚电压正常,应更换IC1。若V3、V4波形不正常,查R12、V3、V4和外围元件。
表1、表2和图4、图5列出在外接 +15V稳压电源、+44V输出端空载条件下IC1、IC2各脚对地电压值和关键点波形图,供检修参考。IC1第14脚(+5V基准电压)若不正常,IC1第13 、2、4、脚电压都会不正常,IC2有关引脚电压也会不正常。断开IC1第14脚外电路后,若各脚电压仍不正常,则可判定IC1损坏
UC3842充电器原理与维修
以uc3842驱动场效应管的单管开关电源,配合LM358双运放来实现三阶段充电方式。220v交流电经T0双向滤波抑制干扰,D1整流为脉动直流,再经C11滤波形成稳定的300V左右的直流电。U1 为TL3842脉宽调制集成电路。其5脚为电源负极,7脚为电源正极,6脚为脉冲输出直接驱动场效应管Q1(K1358) 3脚为最大电流限制,调整R25(2.5欧姆)的阻值可以调整充电器的最大电流。2脚为电压反馈,可以调节充电器的输出电压。4脚外接振荡电阻R1,和振荡电容C1。T1为高频脉冲变压器,其作用有三个。第一是把高压脉冲将压为低压脉冲。第二是起到隔离高压的作用,以防触电。第三是为uc3842提供工作电源。D4为高频整流管(16A60V),C10为低压滤波电容,D5为12V稳压二极管,U3(TL431)为精密基准电压源,配合U2(光耦合器4N35) 起到自动调节充电器电压的作用。调整w2(微调电阻)可以细调充电器的电压。D10是电源指示灯。D6为充电指示灯。 R27是电流取样电阻(0.1欧姆,5w)改变W1的阻值可以调整充电器转浮充的拐点电流(200-300 mA)。
充电器常见的故障有三大类。1:高压故障 2;低压故障 3:高压,低压均有故障。高压故障的主要现象是指示灯不亮,其特征有保险丝熔断,整流二极管D1击穿,电容C11鼓包或炸裂。Q1击穿,R25开路。U1的7脚对地短路。R5开路,U1无启动电压。更换以上元件即可修复。若U1的7脚有11V以上电压,8脚有5V电压,说明U1基本正常。应重点检测Q1和T1的引脚是否有虚焊。若连续击穿Q1,且Q1不发烫,一般是D2,C4失效,若是Q1击穿且发烫,一般是低压部分有漏电或短路,过大或UC3842的6脚输出脉冲波形不正常,Q1的开关损耗和发热量大增,导致Q1过热烧毁。高压故障的其他现象有指示灯闪烁,输出电压偏低且不稳定,一般是T1的引脚有虚焊,或者D3,R12开路,TL3842及其外围电路无工作电源。另有一种罕见的高压故障是输出电压偏高到120V以上,一般是U2失效,R13开路所致或U3击穿使U1的2脚电压拉低,6脚送出超宽脉冲。此时不能长时间通电,否则将严重烧毁低压电路。
低压故障大部分是充电器与电池正负极接反,导致R27烧断,LM358击穿。其现象是红灯一直亮,绿灯不亮,输出电压低,或者输出电压接近0V,更换以上元件即可修复。另外W2因抖动,输出电压漂移,若输出电压偏高,电池会过充,严重失水,发烫,最终导致热失控,充爆电池。若输出电压偏低,会导致电池欠充。
高低压电路均有故障时,通电前应首先全面检测所有的二极管,三极管,光耦合器4N35,场效应管,电解电容,集成电路,R25,R5,R12,R27,尤其是D4(16A60V,快恢复二极管),C10(63V,470UF)。避免盲目通电使故障范围进一步扩大。有一部分充电器输出端具有防反接,防短路等特殊功能。其实就是输出端多加一个继电器,在反接,短路的情况下继电器不工
❽ 电动车充电器线路板上的什么管
电动车充电器电路板上,主要是交流电通过全波整流,高压大容量电容器滤波,输出直流高压,进入开关电源电路,开关电源有单功率管电路或者双管推挽电路组成,功率管通常采用的是场效应晶体管,型号是10N60(耐压600V,电流10A),
❾ 12v直流电机驱动电路 芯片 选型
12v直流电机驱动,电流小于3A可以使用l298N,电流小于43A可以使用BTS7960。
L298N芯片配有双H桥电机驱动器,每个H桥可提供2A电流,电源部分的电源电压范围为2.5-48v,逻辑部分为5v电源,并接受5vTTL电平。通常情况下,电源部分的电压应大于6V,否则芯片可能无法正常工作。
BTS7960是NovalithIC系列三个独立芯片的一部分:一个是p通道高电势场效应晶体管,另一个是n通道低电势场效应晶体管,与驱动器芯片结合在一起,用于形成一个完全集成的大电流半桥。使用芯片到芯片和芯片到芯片技术,所有三个芯片都安装在一个公共的引线框架中。
电源开关使用垂直场效应晶体管技术来确保最佳电阻状态。由于p型通道的高电位开关,需要电荷泵来消除电磁干扰。通过驱动器集成技术,逻辑电平输入,电流采样诊断,压摆率调节器,故障发生时间,防止欠压,过流,短路结构,可轻松连接到微处理器。
(9)推挽电路电动汽车扩展阅读:
直流电动机驱动器有很多种,但驱动原理是恒定的。 通常,有三种类型的电动机速度调节:弱磁加速,电压调节和串电阻调节。 降压调速结合了平滑无级调速和宽电压调节的优点,使其成为小型直流电动机中最常用的调速方法。
传统的无刷直流电动机大多使用霍尔元件或其他位置检测元件作为位置传感器,但是位置传感器维护困难且霍尔元件的温度特性不好,导致系统可靠性差。
因此,无位置传感器的无刷直流电动机已成为理想的选择,具有广阔的发展前景。