电动汽车电池策略
㈠ 电动汽车锂离子电池的研究
上图为锂离子电池的工作原理图。其主要通过离子的迁移来实现化学能与电能之间的转换,从而实现储能和放电。锂离子电池的单体电压为镍氢电池的3倍,并且
具有比能量密度相对较大、无记忆效应、充放电效率高、自放电率低、循环寿命长和无污染性等优点,因此,锂离子电池成为了目前在纯电动汽车上应用最广泛的动
力电池。其中,以磷酸铁锂三元材料为代表的锂离子电池,因其能量密度可达到130Wh/kg-140Wh/kg,且充放电平台稳定、安全性能良好、低温性
能和循环寿命较好2015年10月11日,在合肥中国新能源汽车动力电池材料高峰论坛上,华中科技大学材料学材料与工程学院院长黄云辉也表示,磷酸铁锂电
池通过纳米技术和富锂技术等手段而应用,其实际能量密度将会大幅度提升,并且磷酸铁锂电池实现2元/瓦时以下的成本没有问题。因此,以磷酸锂铁为代表的三
元材料电池,现在是目前纯电动汽车主要的动力电源。
虽然锂离子电池经过发展能量密度及其他性能都得到了很大的提高,但是按照现在车辆油箱的位置大小,且电池重量符合车辆承载能力和轴荷分配要求,动力电
池比能量应达到
500-700Wh/kg。而目前的锂离子电池的能量密度远远低于该值。因此目前提高动力电池能量密度是制约锂离子电池发展的一个瓶颈问题。
目前,为了突破能量密度低这个电池的瓶颈问题,国内外学者主要做了以下几个方面的研究。
在材料方面,而以硅基和锡基合金作为锂离子电池的负极材料。通过这种材料的改进的锂离子电池其理论的容量可分别高达4200Wh/kg和990Wh
/kg,完全能满足纯动力汽车动力电池能量的要求,但是硅基锂离子电池由于充放电过程产生巨大材料体积膨胀效应,以及锂在硅膜中扩散系数相对较小、电化学
性能显著恶化;锡基合金负极材料电池理需解决首次不可逆容量高,充放电循环性能差的问题,目前未能在纯电动汽车动力电池领域得到产业化。
另外一方面,主要是从制备技术和成组技术上进行突破。从电池的制备技术综合考虑,采用纳米技术制备来提高电池的性能,开发新型的纳米材料。从成组技术
上考虑,可合理设计动力电池系统模块化结构,减少由电池单体组成的电池组产生的性能衰减,减小电池组中电池单体一致性的影响;并且通过对实车上电池系统进
行能量管理,实现能量的进一步合理分配利用。目前主要集中在对电池组的能量管理、充放电均衡、以及SOC估算等方面。在电池组能量管理研究方面,针对混合
动力电动汽车能量分配,国内外学者对电池组能量管理分配策略做了大量的研究,总结出了功率跟随控制策略、开关式控制策略、固定因子功率分配控制策略、模糊
控制策略等一系列能量管理控制策略。
综合以上分析,目前纯电动汽车动力电池,主要采用的是锂离子电池。其提高性能的主要的技术瓶颈在于进一步提高纯电动汽车单体电池的性能水平,以及提升纯电动汽车动力电池系统的管理等方面。
㈡ 电动汽车如何配置电池
收先我要说纯电动51KW不太现实!你是不是看错了!是5.1KW吧!我教过好几辆用的都是4kw的直流电机!还有你没说你的电机电压多少!一般的都是60v的!我说你要陪电池的话用10块12v,120A·h的铅酸蓄电池就行!跑90㎞是没问题的!有什么不明白的再问我
㈢ 电动汽车中的电池技术为什么这么难突破了
因为很难有一块高电量,高容量,低质量的电池,以当前的技术,也很难保证电池使用起来的效果,寿命,总体来说就是技术水平还不够完善。
㈣ 电动汽车电池的防护措施
外壳防护,为了防止空气进入,锂电池都被封装在密闭容器冲,并为了防止外力破坏通常配以不锈钢外壳和铝合金外壳。例如,特斯拉的电动汽车,甚至采用了钛合金防护板,以防止汽车使用中,尤其是交通事故中对电池容器的损伤。
隔膜阻断保护,在防止外力破坏的同时,还要防止来自电池内部产生的破坏。
通常为了防止电池的正负极直接碰触而短路,电池内会有一层隔膜,一方面将正负极隔开,一方面又允许带电离子通过。
然而,在锂电池中,隔膜还承担着另一项防护职能。在电池温度过高时,隔膜空隙会自动关闭,让锂离子无法穿越,从而终止整个电池的反应。从而防止了电池由于温度过高,使得其中的电解液气化产生高压,破坏电池密封结构的问题。
过充电压防护,不仅空气要被阻隔在外,还要防止金属锂从电极中外泄。
科学家们通过电极材料的纳米空隙和材料晶格机制,来存放和锁住在充放电中形成的金属锂。
这样一来,即使是电池外壳破裂,氧气进入,也会因氧分子太大进不了这些细小的储存格,而避免自燃的产生。
然而,用过高的电压或充满后继续过长时间的充电,会对锂电池产生十分危险的损害。
锂电池充电电压在高于额定电压(一般是4.2V)后,如果继续充电,由于负极的储存格已经装满了锂原子,后续的锂离子会堆积于负极材料表面。这些锂离子由于极化作用,会形成电子转移,形成金属锂,并由负极表面往锂离子来的方向长出树枝状结晶。
这些没有电极防护的金属锂一方面极为活泼,容易发生氧化反应而发生爆炸。另一方面,形成的金属锂结晶会穿破隔膜,使正负极短路,从而引发短路,产生高温。在高温下,电解液等材料会裂解产生气体,使得电池外壳或压力阀鼓涨破裂,让氧气进入,并与堆积在负极表面的锂原子反应,进而发生爆炸。
锂电池充电时,一定要设定电压上限和过充保护。在正规电池厂家出产的锂电池中,都装有这样的保护电路。当电压超标或电量充满时自动断电。
㈤ 电动汽车电池怎样才算好
电动汽车的电瓶续航公里数越大就越好了,国产电瓶车目前的续航公里数还不行
㈥ 电动汽车电池如何处理
一般来说,电池中会含有汞、铅、铜、镉、镍等金属以及硫酸化合物等合成化学物质,这些成分都是具有毒性的物质,尤其是对于重金属而言,毒性更为严重。如果回收不当,电池中的重金属会随之进入土壤、水域等人类依赖的环境中。电动君先科普一下,通常一至两节普通干电池就能使一平方米的土地失去农用价值,而一粒小小的纽扣电池,若被扔进水里,就可污染600吨水,如果我们不慎吸入对人体造成的伤害极大。
㈦ 电动汽车的电池有什么特点
电动汽车蓄电池放电后,用直流电按与放电电流相反的方向通过蓄电池,使它恢复工作能力,这个过程称为蓄电池充电。蓄电池充电时,电池正极与电源正极相联,电池负极与电源负极相联,充电电源电压必须高于电池的总电动势。充电方式有恒电流充电和恒电压充电两种。
电动汽车充电技术充电方法的研究:常规充电制度是依据1940年前国际公认的经验法则设计的。其中最著名的就是“安培小时规则”:充电电流安培数,不应超过蓄电池待充电的安时数。实际上,常规充电的速度被蓄电池在充电过程中的温升和气体的产生所限制。这个现象对蓄电池充电所必须的最短时间具有重要意义。
㈧ 纯电动汽车的电池管理
纯电动汽车电池管理系统作为电池系统的重要组成部分,具有实时监控电池状态、优化使用电池能量、延长电池寿命和保证电池的使用安全等重要作用。电池管理系统对整车的安全运行、整车控制策略的选择、充电模式的选择以及运营成本都有很大影响。电池管理系统无论在车辆运行过程中还是在充电过程中都要可靠地完成电池状态的实时监控和故障诊断,并通过总线的方式告知车辆集成控制器或充电机,以便采用更加合理的控制策略,达到有效且高效使用电池的目的。
电池管理系统采用集散式系统结构,每套电池管理系统由1台中央控制模块(或称主机)和10个电池测控模块(或称从机)组成。电池管理系统检测模块安装在电池箱前面板内;电池管理系统主控模块安装在车辆尾部高压设备仓内,
电池管理系统的功能如下:
1.电体电池电压的检测
2.电池温度的检测
3.电池组工作电流的检测
4.绝缘电阻检测
5.冷却风机控制
6.充放电次数记录
7.电池组SoC的估测
8.电池故障分析与在线报警
9. 各箱电池充放电次数记录
10.各箱电池离散性评价
11.与车载设备通信,为整车控制提供必要的电池数据CAN1
12.与车载监控设备通信,将电池信息送面板显示CAN2
13.与充电机通信,安全实现电池的充电RS—485
14.有简易的设备实现纯电动汽车电池管理系统的初始化功能,能满足电池快速更换以及电池箱重新编组的需要。
㈨ 电动汽车的动力电池为什么不按干电池的思路
你说的是未来的趋势,我想你说的现在也能使用但是续航公里短,钒电池下来的时候就有可能实现你的推想
㈩ 电动汽车动力电池漫谈-剩余电量是如何测量的
我们一般所说的动力电池指的是电动汽车或者电动两轮车、三轮车车载的,用于驱动车辆行驶的电池,即用作车辆动力的电池,主要区别于储能电池、低压供电电池等。
@电车换电说,专门分享一些电动汽车,特别是电动汽车电池更换方面的信息和资料,感兴趣的读者可以关注哦!
本文来源于汽车之家车家号作者,不代表汽车之家的观点立场。