电动汽车控制技术
Ⅰ 电动汽车整车控制系统的作用
新能源汽车作为一种绿色的运输工具在环保、节能以及驾驶性能等方面具有诸多内燃机汽车无法比拟的优点,其是由多个子系统构成的一个复杂系统,主要包括电池、电机、制动等动力系统以及其它附件(如图1所示)。各子系统几乎都通过自己的控制单元(ECU)来完成各自功能和目标。为了满足整车动力性、经济性、安全性和舒适性的目标,一方面必须具有智能化的人车交互接口,另一方面,各系统还必须彼此协作,优化匹配,这项任务需要由控制系统中的整车控制器来完成。基于总线的分布式控制网络是使众多子系统实现协同控制的理想途径。由于CAN总线具有造价低廉、传输速率高、安全性可靠性高、纠错能力强和实时性好等优点,己广泛应用于中、低价位汽车的实时分布式控制网络。随着越来越多的汽车制造厂家采用CAN协议,CAN逐渐成为通用标准。采用总线网络可大大减少各设备间的连接信号线束,并提高系统监控水平。另外,在不减少其可靠性前提下,可以很方便地增加新的控制单元,拓展网络系统功能。
下面对每个模块功能进行简要的说明:
1、开关量调理模块
开关量调理模块,用于开关输入量的电平转换和整型,其一端与多个开关量传感器相连,另一端与微控制器相接;
2、继电器驱动模块
继电器驱动模块,用于驱动多个继电器,其一端通过光电隔离器与微控制器相连,另一端与多个继电器相接;
3、高速CAN总线接口模块
高速CAN总线接口模块,用于提供高速CAN总线接口,其一端通过光电隔离器与微控制器相连,另一端与系统高速CAN总线相接;
4、电源模块
电源模块,可为微处理器和各输入和输出模块提供隔离电源,并对蓄电池电压进行监控,与微控制器相连;
5、模拟量输入和输出模块
模拟量输入和输出模块,可采集0~5V模拟信号,并可输出0~4.095V的模拟电压信号。
6、脉冲信号输入和输出模块
可采集脉冲信号并调理,范围1Hz—20KHZ, 幅度6---50V;输出PWM信号 范围1HZ—10KHZ,幅度0—14V。 7、故障和数据存储模块铁电存储器可以存储标定的数据和故障码,车辆特征参数等,容量32K。
二、整车控制器功能说明
新能源汽车整车控制器基本上以下几项功能:
1. 对汽车行驶控制的功能
新能源汽车的动力电机必须按照驾驶员意图输出驱动或制动扭矩。当驾驶员踩下加速踏板或制动踏板,动力电机要输出一定的驱动功率或再生制动功率。踏板开度越大,动力电机的输出功率越大。因此,整车控制器要合理解释驾驶员操作;接收整车各子系统的反馈信息,为驾驶员提供决策反馈;对整车各子系统的发送控制指令,以实现车辆的正常行驶。
2. 整车的网络化管理
在现代汽车中,有众多电子控制单元和测量仪器,它们之间存在着数据交换,如何让这种数据交换快捷、有效、无故障的传输成为一个问题,为了解决这个问题,德国BOSCH公司于20世纪80年代研制出了控制器局域网(CAN)。在电动汽车中,电子控制单元比传统燃油车更多更复杂,因此,CAN总线的应用势在必行。整车控制器是电动汽车众多控制器中的一个,是CAN总线中的一个节点。在整车网络管理中,整车控制器是信息控制的中心,负责信息的组织与传输,网络状态的监控,网络节点的管理以及网络故障的诊断与处理。
3. 制动能量回馈控制
新能源汽车以电动机作为驱动转矩的输出机构。电动机具有回馈制动的性能,此时电动机作为发电机,利用电动汽车的制动能量发电,同时将此能量存储在储能装置中,当满足充电条件时,将能量反充给动力电池组。在这一过程中,整车控制器根据加速踏板和制动踏板的开度以及动力电池的SOC值来判断某一时刻能否进行制动能量回馈,如果可以进行,整车控制器向电机控制器发出制动指令,回收能部分能量。
4. 整车能量管理和优化
在纯电动汽车中,电池除了给动力电机供电以外,还要给电动附件供电,因此,为了获得最大的续驶里程,整车控制器将负责整车的能量管理,以提高能量的利用率。在电池的SOC值比较低的时候,整车控制器将对某些电动附件发出指令,限制电动附件的输出功率,来增加续驶里程。
5. 车辆状态的监测和显示
整车控制器应该对车辆的状态进行实时检测,并且将各个子系统的信息发送给车载信息显示系统,其过程是通过传感器和CAN总线,检测车辆状态及其各子系统状态信息,驱动显示仪表,将状态信息和故障诊断信息经过显示仪表显示出来。显示内容包括:电机的转速、车速,电池的电量,故障信息等。
6. 故障诊断与处理
连续监视整车电控系统,进行故障诊断。故障指示灯指示出故障类别和部分故障码。根据故障内容,及时进行相应安全保护处理。对于不太严重的故障,能做到低速行驶到附近维修站进行检修。
7. 外接充电管理
实现充电的连接,监控充电过程,报告充电状态,充电结束。
8. 诊断设备的在线诊断和下线检测
负责与外部诊断设备的连接和诊断通讯,实现UDS诊断服务,包括数据流读取,故障码的读和清除,控制端口的调试。
Ⅱ 电动汽车变频控制技术及原理
从电动汽车的工作原理来看,并不是非常复杂。但是从充电开始,电动汽车就面临着问题。给电动汽车充电最方便的方式当然是家用电源。但是家用电源是220V的交流电(AC)给电动汽车充电速度非常慢。充电桩充电很快但是没有专用车库的话,又无法安装。再者充电快也是相对而言,目前充电桩用直流电(DC)最快也要30分钟左右。其次是电池,为了增加续航里程,电动车只能增加电池容量。而过重的电池容量又会影响续航与充电时间。
电动汽车的组成包括
电力驱动及控制系统、驱动力传动等机械系统、完成既定任务的工作装置等。电力驱动及控制系统是电动汽车的核心,也是区别于内燃机汽车的最大不同点。电力驱动及控制系统由驱动电动机、电源和电动gesep机的调速控制装置等组成。电动汽车的其他装置基本与内燃机汽车相同。
1. 电源
电源为电动汽车的驱动电动机提供电能,电动机将电源的电能转化为机械能,通过传动装置或直接驱动车轮和工作装置。目前,电动汽车上应用最广泛的电源是铅酸蓄电池,但随着电动汽车技术的发展,铅酸蓄电池由全球节能环保网于比能量较低,充电速度较慢,寿命较短,逐渐被其他蓄电gesep全球节能环保网池所取代。正在发展的电源主要有钠硫电池、镍镉电池、锂电池、燃料电池、飞轮电池等,这些新型电源的应用,为电动汽车的发展开辟了广阔的前景。
2. 驱动电动机
驱动电动机的作用是将电源的电能转化为机械能,通过传动装置或直接驱动车轮和工作装置。目前电动汽车上广泛采用直流串激电动机,这种电机具有"软"的机械gesep.com特性,与汽车的行驶特性非常相符。但直流电动机由于存在换向火花,比功率较小、效率较低,维护保养工作量大,随着电机技术和电机控制技术的发展,势必逐渐被直流无刷电动机(BCDM)、开关磁阻电动机(SRM)和交流异步电动机所取代。
http://mag.big-bit.com/
Ⅲ 现代电动汽车的关键技术包括哪些
现代电动汽车关键技术主要包括三大件,动力电池,电机和电控
Ⅳ 请阐述纯电动汽车电路的控制原理
电动车窗的控制有手动控制和自动控制两种功能。所谓手动控制是指按着相应的手动按钮,车窗可以上升或下降,若中途松开按钮,上升或下降的动作即停止。自动控制是指按下自动按钮,松开手后车窗会一直上升至最高或下降至最低
Ⅳ 电动汽车控制系统的分类及结构原理图
来自欣联达
Ⅵ 纯电动汽车有哪些核心技术
电动车(EV)、混动车(HEV)的各种核心技术,如电池、电机、逆变器、可充电电池、充电器等 日本很厉害,尤其是电池基础技术!
AutoCTO汽车学院总结,发展电动汽车必须解决好4个方面的关键技术:电池技术、电机驱动及其控制技术、电动汽车整车技术以及能量管理技术。
电池是电动汽车的动力源泉,也是一直制约电动汽车发展的关键因素。电动汽车用电池的主要性能指标是比能量(E)、能量密度(Ed)、比功率(P)、循环寿命(L)和成本(C)等。要使电动汽车能与燃油汽车相竞争,关键就是要开发出比能量高、比功率大、使用寿命长的高效电池。
电动机与驱动系统是电动汽车的关键部件,要使电动汽车有良好的使用性能,驱动电机应具有调速范围宽、转速高、启动转矩大、体积小、质量小、效率高且有动态制动强和能量回馈等特性。电动汽车用电动机主要有直流电动机(DCM)、感应电动机(IM)、永磁无刷电动机(PMBLM)和开关磁阻电动机(SRM)4类。
能量管理系统是电动汽车的智能核心。一辆设计优良的电动汽车,除了有良好的机械性能、电驱动性能、选择适当的能量源(即电池)外,还应该有一套协调各个功能部分工作的能量管理系统,它的作用是检测单个电池或电池组的荷电状态,并根据各种传感信息,包括力、加减速命令、行驶路况、蓄电池工况、环境温度等,合理地调配和使用有限的车载能量;它还能够根据电池组的使用情况和充放电历史选择最佳充电方式,以尽可能延长电池的寿命。
Ⅶ 电动汽车控制方式(电动汽车电驱动系统)是不是和变频器一个原理呢
电动汽车两个概念:楼上各位所说的是那些山寨电动汽车,用铅酸电池、直流电机,控制上就是简单的通断。严格的说那不是汽车。
真正意义上的电动汽车现在主要使用两种:永磁电机(丰田有使用)、交流异步电机(使用最广泛)。控制上都是矢量控制,说简单了就跟变频器差不多,但是控制上更复杂。
Ⅷ 电动汽车的驱动与控制的内容简介
随着现代控制理论的发展,现在各种现代控制技术和微处理器已经在电动车驱动控制系统中发挥着重要的作用。电动车动控制系统必将向着各学科交叉、融合的方向发展,成为一个机电集成的智能化系统。
(1)现状
现在使用较多的电动午.用驱动电机中,交流异步电机采用的控制方案有矢量控制和直接转矩控制两种:永磁同步电机驱动因为控制系统比较复杂,为达到最佳控制效果,常常将两种或几种控制方案结合运用,如采用最人转矩控制和弱磁控制原理以实现电机的效率最佳化和宽范围的调速方案,集转矩控制和PWM控制于一身的控制方案等。
近来在电动车驱动系统中又出现了效率最优控制、无速度传感器交流调速控制系统和高频交流脉冲密度调制技术等几种新技术。随着交流电机在电动牟驱动系统中的应用,常规线性控制算法,如P l和P ID调节方法已不能再满足惟能的控制要求。现在各种现代控制技术开始应用在电动车电机驱动控制系统中,如模糊控制、自适应控制、神经网络和专家系统等。
(2)发展趋势
通过对I乜动车用电机的比较可见,交流电机仍将是未来电动车电机驱动系统的首选,其控制系统将随着电力电子技术的发展小断优化,交流电机控制装置与控制技术将得到不断发展。随着现代控制理论的发展,现在各种现代控制技术和微处理器已经在电动车驱动控制系统中发挥着重要的作用。电动车动控制系统必将向着各学科交叉、融合的方向发展,成为一个机电集成的智能化系统。
《电动汽车的驱动与控制》比较全面地介绍了电动汽车驱动系统控制技术的现状,阐述了电动汽车驱动系统的基本结构、工作原理、驱动电动机技术、功率变换技术、传感器技术及相关的建模与仿真技术。针对纯电动汽车的驱动系统进行建模,对电动汽车驱动系统的速度闭环控制的稳定性问题和控制策略进行了深入研究。根据两款电动轿车驱动系统的主要参数,建立了简化的被控对象数学模型,设计了PID控制器、自适应控制器、模糊控制器和预测控制器,利用数值仿真进行比较分析并研究了其控制性能。书中融入了编著者近期的研究成果,对于电动汽车设计具有重要的指导意义。《电动汽车的驱动与控制》理论联系实际,研究成果比较丰富,深入浅出、图文并茂,可作为高等院校相关专业的研究生教材及本科生参考用书,也可供电动汽车及其相关领域的工程技术人员和科研人员参考。
Ⅸ 电动汽车控制器技术的变速和方向变换是
控制器技术的变速和方向变换是靠电动机调速控制装置来完成的,其原理是通过控制电动机的电压和电流来实现电动机的驱动转矩和旋转方向的控制。目前电动汽车上应用较广泛的是晶闸管斩波调速,通过均匀改变电机的端电压,控制电机的电流,来实现电机的无级调速。
Ⅹ 2.电动汽车控制系统有哪些如何布局
你好,很高兴回答你的问题,希望能帮助到你,电动汽车的控制系统有整车控制系统,动力电池管理系统,电机控制系统,车载充电控制系统,辅助电源控制系统等,现在目前主流采用四合一集成布局