纯电动汽车电池控制系统的结构图
❶ 请阐述纯电动汽车电路的控制原理
电动车窗的控制有手动控制和自动控制两种功能。所谓手动控制是指按着相应的手动按钮,车窗可以上升或下降,若中途松开按钮,上升或下降的动作即停止。自动控制是指按下自动按钮,松开手后车窗会一直上升至最高或下降至最低
❷ 电动汽车的系统结构
电动汽车是指以车载电源为动力,用电机驱动车轮行驶,符合道路交通、安全法规各项要求的车辆。它使用存储在电池中的电来发动。在驱动汽车时有时使用12或24块电池,有时则需要更多。
电动汽车 的组成包括:电力驱动及控制系统、驱动力传动等机械系统、完成既定任务的工作装置等。电力驱动及控制系统是电动汽车的核心,也是区别于内燃机汽车的最大不同点。电力驱动及控制系统由驱动电动机、电源和电动机的调速控制装置等组成。电动汽车的其他装置基本与内燃机汽车相同。
电源
为电动汽车的驱动电动机提供电能,电动机将电源的电能转化为机械能。应用最广泛的电源是铅酸蓄电池,但随着电动汽车技术的发展,铅酸蓄电池由于能量低,充电速度慢,寿命短,逐渐被其他蓄电池所取代。正在发展的电源主要有钠硫电池、镍镉电池、锂电池、燃料电池等,这些新型电源的应用,为电动汽车的发展开辟了广阔的前景。
驱动电动机
驱动电动机的作用是将电源的电能转化为机械能,通过传动装置或直接驱动车轮和工作装置。但直流电动机由于存在换向火花,功率小、效率低,维护保养工作量大;随着电机控制技术的发展,势必逐渐被直流无刷电动机(BLDCM)、开关磁阻电动机(SRM)和交流异步电动机所取代,如无外壳盘式轴向磁场直流串励电动机。 电动机调速控制装置是为电动汽车的变速和方向变换等设置的,其作用是控制电动机的电压或电流,完成电动机的驱动转矩和旋转方向的控制。
早期的电动汽车上,直流电动机的调速采用串接电阻或改变电动机磁场线圈的匝数来实现。因其调速是有级的,且会产生附加的能量消耗或使用电动机的结构复杂,现已很少采用。应用较广泛的是晶闸管斩波调速,通过均匀地改变电动机的端电压,控制电动机的电流,来实现电动机的无级调速。在电子电力技术的不断发展中,它也逐渐被其他电力晶体管(如GTO、MOSFET、BTR及IGBT等)斩波调速装置所取代。从技术的发展来看,伴随着新型驱动电机的应用,电动汽车的调速控制转变为直流逆变技术的应用,将成为必然的趋势。
在驱动电动机的旋向变换控制中,直流电动机依靠接触器改变电枢或磁场的电流方向,实现电动机的旋向变换,这使得电路复杂、可靠性降低。当采用交流异步电动机驱动时,电动机转向的改变只需变换磁场三相电流的相序即可,可使控制电路简化。此外,采用交流电动机及其变频调速控制技术,使电动汽车的制动能量回收控制更加方便,控制电路更加简单。 工作装置是工业用电动汽车为完成作业要求而专门设置的,如电动叉车的起升装置、门架、货叉等。货叉的起升和门架的倾斜通常由电动机驱动的液压系统完成。
❸ 纯电动汽车的结构布置
纯电动汽车的结构:纯电动汽车的基本构造有哪些
电动汽车的结构布置各式各样,比较灵活,概括起来分为纯电动汽车电动机中央驱动和电动轮驱动两种形式。电动机中央驱动形式借用了内燃机汽车的驱动方案,将内燃机换成电动机及其相关器件,用一台电动机驱动左右两侧的车轮。电动轮驱动形式的机械传动装置的体积与质量较电动机中央驱动形式的大大减小,效率显著提高,代价是增加了控制系统的复杂程度与成本。
纯电动汽车的结构:纯电动汽车有哪些种类
纯电动汽车发展至今,种类较多,通常按车辆用途、车载电源数目以及驱动系统的组成进行分类。按照用途不同分类,纯电动汽车可分为电动轿车、电动货车和电动客车三种。
(1)电动轿车是目前最常见的纯电动汽车。除了一些概念车,纯电动轿车已经开始批量生产,东风日产启辰晨风、比亚迪秦已进入汽车市场。
(2)电动货车用作功率运输的电动货车目前还比较少,而在矿山、工地及一些特殊场地,则早已出现了一些大吨位的纯电动载货汽车。
(3)电动客车,目前纯电动小客车也较少见;纯电动大客车用作公共汽车,在一些城市的公交线路以及世博会、世界性的运动会上,已经有了良好的表现。
纯电动汽车的结构:纯电动汽车发展历程是怎样的
早在19世纪后半叶的1873年,英国人罗伯特·戴维森制作了世界上最初的可供实用的电动汽车。这比德国人戴姆勒(Gottlieb Daimler)和本茨(Karl Benz)发明汽油发动机汽车早了10年以上。
戴维森发明的电动汽车是一辆载货车,长4800mm,宽1800mm,使用铁、锌、汞合金与硫酸进行反应的一次电池。其后,从1880年开始,应用了可以充放电的二次电池。从一次电池发展到二次电池,这对于当时电动汽车来讲是一次重大的技术变革,由此电动汽车需求量有了很大提高。在19世纪下半叶成为交通运输的重要产品,写下了电动汽车在人类交通史上的辉煌一页。1890年法国和英伦敦的街道上行驶着电动大客车,当时的车用内燃机技术还相当落后,行驶里程短,故障多,维修困难,而电动汽车却维修方便。
在欧美,电动汽车最盛期是在19世纪末。1899年法国人考门·吉纳驾驶一辆44kW双电动机为动力的后轮驱动电动汽车,创造了时速106km的记录。
1900年美国制造的汽车中,电动汽车为15755辆,蒸汽机汽车1684辆,而汽油机汽车只有936辆。进入20世纪以后,由于内燃机技术的不断进步,1908年美国福特汽车公司T型车问世,以流水线生产方式大规模批量制造汽车使汽油机汽车开始普及,致使在市场竞争中蒸汽机汽车与电动汽车由于存在着技术及经济性能上的不足,使前者被无情的岁月淘汰,后者则呈萎缩状态。
纯电动汽车的结构:纯电动汽车的核心技术是什么
发展电动汽车必须解决好4个方面的关键技术:电池技术、电机驱动及其控制技术、电动汽车整车技术以及能量管理技术。
电池技术电池是电动汽车的动力源泉,也是一直制约电动汽车发展的关键因素。电动汽车用电池的主要性能指标是比能量(E)、能量密度(Ed)、比功率(P)、循环寿命(L)和成本(C)等。要使电动汽车能与燃油汽车相竞争,关键就是要开发出比能量高、比功率大、使用寿命长的高效电池。
电力驱动及其控制技术电动机与驱动系统是电动汽车的关键部件,要使电动汽车有良好的使用性能,驱动电机应具有调速范围宽、转速高、启动转矩大、体积小、质量小、效率高且有动态制动强和能量回馈等特性。目前,电动汽车用电动机主要有直流电动机(DCM)、感应电动机(IM)、永磁无刷电动机(PMBLM)和开关磁阻电动机(SRM)4类。
电动汽车整车技术电动汽车是高科技综合性产品,除电池、电动机外,车体本身也包含很多高新技术,有些节能措施比提高电池储能能力还易于实现。采用轻质材料如镁、铝、优质钢材及复合材料,优化结构,可使汽车自身质量减轻30%-50%;实现制动、下坡和怠速时的能量回收;采用高弹滞材料制成的高气压子午线轮胎,可使汽车的滚动阻力减少50%;汽车车身特别是汽车底部更加流线型化,可使汽车的空气阻力减少50%。
能量管理技术蓄电池是电动汽车的储能动力源。电动汽车要获得非常好的动力特性,必须具有比能量高、使用寿命长、比功率大的蓄电池作为动力源。而要使电动汽车具有良好的工作性能,就必须对蓄电池进行系统管理。
纯电动汽车的结构:纯电动汽车在中国的发展现状及未来前景如何
中国电动汽车虽然没有欧美等国家起步早, 但国家从维护能源安全, 改善大气环境, 提高汽车工业竞争力, 实现我国汽车工业的跨越式发展的战略高度考虑, 从“八五”开始到现在, 电动汽车研究一直是国家计划项目, 并在2001 年设立了“电动汽车重大科技专项”。通过组织企业、高等院校和科研机构, 集中各方面力量进行联合攻关, 现正处于研发势头强劲阶段, 部分技术已经赶上甚至超过世界先进水平。
随着电动汽车行业竞争的不断加剧,大型电动汽车企业间并购整合与资本运作日趋频繁,国内优秀的电动汽车企业愈来愈重视对行业市场的研究,特别是对企业发展环境和客户需求趋势变化的深入研究。正因为如此,一大批国内优秀的电动汽车品牌迅速崛起,逐渐成为电动汽车行业中的翘楚!
另外,国务院印发了《节能与新能源汽车产业发展规划(2012-2020年)》(以下简称《发展规划》)的通知,其中删除了征求意见稿中“近期以混合电动车为重点”和“中/重度混合动力乘用车占乘用车年产销量的50%以上”的字句。对此业界专家认为,这样有效避免之前直接点明以混合电动车为重点而可能引起的新能源发展路线之争,又回避了之前定出的难以达到的高指标,再次明晰了未来新能源发展目标。
❹ 纯电动汽车有哪几个系统组成
1、动力电池组
2、驱动电机组
3、电控单元组
4、再加上传统汽车系统
❺ 电瓶车电池的内部结构原理图和示意图
电瓶车电池的内部结构原理图如下:
电瓶车电池的导电涂层在锂电池行业内通常指涂覆于正极集流体——铝箔表面的一层导电涂层,涂覆导电涂层的铝箔称为预涂层铝箔或简称涂层铝箔,其最早在电池中的实验可以追溯到70年代,而近几年随着新能源行业。
电池的导电涂层在锂电池中能够有效提高极片附着力,减少粘结剂的使用量,同时对于电池的电性能也有显著提升。性能如下:
1、接触电阻下降40%;
2、胶黏剂用量降低50%;
3、同倍率下,电池电压平台提升20%;
4、材料与集流体附着力提高30%,经过长期循环不会有脱层现象。
(5)纯电动汽车电池控制系统的结构图扩展阅读:
电瓶车的蓄电池一般电压为36伏,容量12安培小时,电池功率36伏*12安=432瓦,电瓶车的电机功率有180瓦、240瓦、350瓦等;
充电时如按6小时计,每小时充电电流2安培,每小时充电容量36伏*2安*1小时=72瓦时=0.072千瓦时=0.07度电,6小时共用0.07度*6=0.42度电,如加上充电器的损耗20%,一次充好电需用0.6度。
由于充电电流不同,因此充电时间长短不同,但总的充电用电量都是0.6度左右。
铅蓄电池因其价格便宜、材料来源丰富、比功率较高、技术和制造工艺较成熟、资源回收率高等综合因素被各国各种电动车普遍采用和广泛研究。
❻ 电动汽车控制系统的分类及结构原理图
来自欣联达
❼ 在动作车间,纯电动汽车的基本结构都有哪一些
纯电动汽车的组成包括:电力驱动和控制系统,驱动力传递和其他机械系统,完成已完成任务的工作装置等。动力驱动器和控制系统是电动汽车的核心,它也不同于内燃机之间的最大差异。动力驱动器和控制系统由速度控制装置(例如驱动马达,电源和马达)组成。电动汽车的其他装置与内燃机的装置基本相同。
在早期的电动汽车中,直流电动机的速度调节是通过串联连接电阻器或改变电动机励磁线圈的匝数来实现的。由于其调速是步进的,会产生额外的能量消耗或使用的电动机结构复杂,因此现在很少使用。最广泛使用的是晶闸管斩波调速,它通过均匀地改变电动机的端电压并控制电动机的电流来实现电动机的无级调速。随着电子功率技术的不断发展,它已逐渐被其他功率晶体管(分为GTO,MOSFET,BTR,IGBT等)斩波器调速装置所取代。从技术发展的角度来看,随着新型驱动电机的应用,将电动汽车的速度控制转变为直流逆变器技术的应用已成为必然趋势。
❽ 电动汽车电池组管理系统的组成
电动汽车的动力输出依靠电池,而电池管理系统BMS(Battery Management System)则是其中的核心,负责控制电池的充电和放电以及实现电池状态估算等功能。通常情况下,BMS主要包括硬件、底层软件和应用层软件三部分,下面就来给大家详细介绍一下。
硬件
1、功能
硬件的设计和具体选型要结合整车及电池系统的功能需求,通用的功能主要包括采集功能(如电压、电流、温度采集)、充电口检测(CC和CC2)和充电唤醒(CP和A+)、继电器控制及状态诊断、绝缘检测、高压互锁、碰撞检测、CAN通讯及数据存储等要求。
2、架构
BMS硬件架构分为分布式和集中式:
(1)分布式包括主板和从板,可能一个电池模组配备一个从板,这样的设计缺点是如果电池模组的单体数量少于12个会造成采样通道浪费(一般采样芯片有12个通道),或者2-3个从板采集所有电池模组,这种结构一块从板中具有多个采样芯片,优点是通道利用率较高,节省成本;
(2)集中式是将所有的电气部件集中到一块大的板子中,采样芯片通道利用最高且采样芯片与主芯片之间可以采用菊花链通讯,电路设计相对简单,产品成本大为降低,只是所有的采集线束都会连接到主板上,对BMS的安全性提出更大挑战,并且菊花链通讯稳定性方面也可能存在问题。
3、通讯方式
采样芯片和主芯片之间信息的传递有CAN通讯和菊花链通讯两种方式,其中CAN通讯最为稳定,但由于需要考虑电源芯片,隔离电路等成本较高,菊花链通讯实际上是SPI通讯,成本很低,稳定性方面相对较差,但是随着对成本控制压力越来越大,很多厂家都在向菊花链的方式转变,一般会采用2条甚至更多菊花链来增强通讯稳定性。
4、结构
BMS硬件包括电源IC、CPU、采样IC、高驱IC、其他IC部件、隔离变压器、RTC、EEPROM和CAN模块等。其中CPU是核心部件,一般用的是英飞凌的TC系列,不同型号功能有所差异,对于AUTOSAR架构的配置也不同。采样IC厂家主要有凌特、美信、德州仪器等,包括采集单体电压、模组温度以及外围配置均衡电路等。
底层软件
按照AUTOSAR架构划分成许多通用功能模块,减少对硬件的依赖,可以实现对不同硬件的配置,而应用层软件变化较小。应用层和底层需要确定好RTE接口,并且从灵活性方面考虑DEM(故障诊断事件管理)、DCM (故障诊断通信管理)、FIM(功能信息管理)和CAN通讯预留接口,由应用层进行配置。
❾ 纯电动汽车驱动系统结构形式有哪些分别包括哪些零件
电动汽车定义:纯电动汽车是完全由可充电电池(如铅酸电池、镍镉电池、镍氢电池或锂离子电池)提供动力源,以电动机为驱动系统的汽车。
其动力系统主要由动力电池、驱动电动机组成,从电网取电或更换蓄电池获得电能。
电动汽车最早的历史可以追溯到19世纪后期,在1881年8-11月巴黎举行的国际电器展览会上,展出了法国人古斯塔夫•特鲁夫研制的电动三轮车,这是世界上第一辆电动车辆,它采用多次性铅酸充电电池和直流电动机,可以实际操作使用,这辆车的诞生具有划时代的意义。
在接下来的1882年,英国的威廉•爱德华•阿顿和约翰•培里也合作研制了一辆电动三轮车,车的速度是4.4km/h。三位先驱的努力使得在燃油汽车尚未问世之前,电动汽车已经诞生,此后电动车辆在欧美等国家迅速兴起。
纯电动汽车的结构
传统内燃机汽车主要由发动机、底盘、车身、电气设备四大部分组成。 纯电动汽车与传统汽车相比,取消了发动机,传动机构发生了改变,根据驱动方式不同,部分部件已经简化或者取消,增加了电源系统和驱动电机等新机构。 由于以上系统功能的改变,纯电动汽车改由新的四大部分组成:电力驱动控制系统、底盘、车身、辅助 系统。
❿ 纯电动汽车的主要结构
电动机调速控制装置是为电动汽车的变速和方向变换等设置的,其作用是控制电动机的电压或电流,完成电动机的驱动转矩和旋转方向的控制。
早期的电动汽车上,直流电动机的调速采用串接电阻或改变电动机磁场线圈的匝数来实现。因其调速是有级的,且会产生附加的能量消耗或使用电动机的结构复杂,现已很少采用。应用较广泛的是晶闸管斩波调速,通过均匀地改变电动机的端电压,控制电动机的电流,来实现电动机的无级调速。在电子电力技术的不断发展中,它也逐渐被其他电力晶体管(入GTO、MOSFET、BTR及IGBT等)斩波调速装置所取代。从技术的发展来看,伴随着新型驱动电机的应用,电动汽车的调速控制转变为直流逆变技术的应用,将成为必然的趋势。
在驱动电动机的旋向变换控制中,直流电动机依靠接触器改变电枢或磁场的电流方向,实现电动机的旋向变换,这使得电路复杂、可靠性降低。当采用交流异步电动机驱动时,电动机转向的改变只需变换磁场三相电流的相序即可,可使控制电路简化。此外,采用交流电动机及其变频调速控制技术,使电动汽车的制动能量回收控制更加方便,控制电路更加简单。 电动汽车的制动装置同其他汽车一样,是为汽车减速或停车而设置的,通常由制动器及其操纵装置组成。在
电动汽车上,一般还有电磁制动装置,它可以利用驱动电动机的控制电路实现电动机的发电运行,使减速制动时的能量转换成对蓄电池充电的电流,从而得到再生利用。目前国内电动汽车在大功率载客汽车,给提供空气制动设备有耐力NAILI滑片式空气压缩机,主要是压缩空气的制动方式。 工作装置是工业用电动汽车为完成作业要求而专门设置的,如电动叉车的起升装置、门架、货叉等。货叉的起升和门架的倾斜通常由电动机驱动的液压系统完成。