电动汽车电池的改进
❶ 电动汽车的发展方向是哪里电动汽车的电池技术会怎样进步
前瞻产业研究院《中国电动汽车行业市场需求预测与投资战略规划分析报告》
上世纪70年代全球三次石油危机爆发后,各跨国汽车公司先后开始研发各种类型的电动汽车。我国经过“八五”、“九五”、“十五”三个五年计划,在研发电动汽车的专项上投入了大量的人力、物力和财力,并取得了一系列科研成果,但是,迄今为止,这些科研成果真正能转化为产品,并实现产业化生产的项目并不多。国外大汽车公司投入远比我国更多的资金和人力,已投入批量生产的电动汽车产品也寥寥无几。随着全球能源危机的不断加深,石油资源的日趋枯竭以及大气污染、全球气温上升的危害加剧,各国政府及汽车企业普遍认识到节能和减排是未来汽车技术发展的主攻方向,发展电动汽车将是解决这二个技术难点的最佳途径。下面将为您介绍电动汽车的现状与发展趋势。
一、电动汽车的现状
现代电动汽车一般可分为三类:纯电动汽车(BEV)、混合动力汽车(HEV)、燃料电池电动汽车(FCEV)。但是近几年在传统混合动力汽车的基础上,又派生出一种插电式(Plug-In)混合动力汽车,简称PHEV。本文将电动汽车技术研发的若干问题和趋势,作简要的介绍和评述。
1、纯电动汽车(BEV)
纯电动汽车是指完全由动力蓄电池提供电力驱动的电动汽车,虽然它已有134年的悠久历史,但一直仅限于某些特定范围内应用,市场较小。主要原因是由于各种类别的蓄电池,普遍存在价格高、寿命短、外形尺寸和重量大、充电时间长等严重缺点。目前采用的铅酸电池、镍氢电池和锂离子电池,它们已达到的实际性能指标和市场平均价格,如表1所示。根据实际装车时的循环寿命和市场价格,可估算出电动汽车从各种动力电池上每取出1kWh电能所必须付出的费用。计算时,假设电池最高可充电荷电状态(SOC)为0.9,放电SOC为0.2,即实际可用的电池容量仅占总容量的70%;由电网供电价为0.5元/kWh,电池的平均充放电效率为0.75。
从表1的粗略计算中可知,虽然从电网取电仅需
0.5元/kWh,但充入电池,再从电池取出,铅酸电池每提供1kWh电能,价格为3.05元左右,其中2.38元为电池折旧费,0.67元为电网供电费,而从镍氢电池中每提供1kWh电能,费用为9.6元,锂离子电池为10.2元,即后二种先进电池供电成本是铅酸电池的三倍多。
目前国内市场上用柴油机发电,价格大致为3元/kWh,若用汽油机发电,供电价格估计为4元/kWh,即从铅酸电机提供电能的价格大致和柴油机发电价格相等,仅仅从取得能量的成本来考虑,采用铅酸电池比汽油机驱动有一定价格优势,但是由于它太过笨重,充电时间又长,因此只被广泛用于车速小于50km/h
的各种场地车、高尔夫球车、垃圾车、叉车以及电动自行车上。实践证实铅酸电池在这一低端产品市场上有较强的竞争力和实用性。
镍氢电池的主要优点是相对寿命较长,但是由于镍金属占其成本的60%,导致镍氢电池价格居高不下。锂离子电池技术发展很快,近10年来,其比能量由
100Wh/kg增加到180Wh/kg,比功率可达2000W/kg,循环寿命达1000次以上,工作温度范围达-40~55℃。美国USABC在
2002年制定的锂离子电池技术发展目标如表2所示。
近年由于磷酸铁锂离子电池的研发有重大突破,又大大提高了电池的安全性。目前已有许多发达国家将锂离子电池作为电动汽车用动力电池的主攻方向。我国拥有锂资源优势,锂电池产量到2004年已占全球市场的37.1%,预计到2015年以后,锂离子电池的性/价比有望达到可以和铅酸电池竞争的水平,而成为未来电动汽车的主要动力电池。
图1示出了国内外各种纯电动车辆数量/性能和价格/性能曲线,以电动自行车为代表的低性能车辆,由于其成本低廉,仅我国在2006年已达到年产2000万辆,美国通用汽车公司生产的冲击1号电动跑车,虽然已达到了很高的动力性,但是由于售价高昂,仅生产了区区50辆,由于没有市场而不得不停产。性能较低的场地车,在我国年产达7000~8000辆左右;天津清源电动车公司生产的微型电动车,最高车速仅50km/h,年产也可以达千辆以上,这可能是目前市场所能接受的纯电动车辆性能的上限。上述所有电动车辆均采用铅酸电池为动力。随着高性能锂离子电池的性/价比不断提升,未来5~10年内,市场上可能会出现最高车速≥100km/h,续驶里程≥250km的高性能纯电动汽车。
2、混合动力电动汽车(HEV)
由于完全由动力蓄电池驱动的纯电动汽车,其性能/价格比长期以来都远远低于传统的内燃机汽车,难于与传统汽车相竞争,上个世纪90年代以来各大汽车公司都着手开发混合动力汽车。日本丰田公司在1997年率先向市场推出“先驱者”(Prius)混合动力汽车,并在日本、美国和欧洲各国市场上均获得较大成功,累计产销量已超过60万辆。随后日本本田、美国福特、通用和欧洲一些大公司,也纷纷向市场推出各种类型的混合动力汽车。
2.1 研制全混合电动汽车的必要性
混合动力电动汽车是指具备两个以上动力源、而其中有一个可以释放电能的汽车。混合动力汽车按混合方式不同,可分为串联式、并联式和混联式三种;按混合度(电机功率与内燃机功率之比)的不同,又可分为微混合、轻度混合和全混合三种。其中外挂式皮带驱动起动/发电(BSG)式是微混合动力汽车的典型结构,其电机功率一般仅2~3kW,依赖发动机的停车断油功能,可节燃油5~7%;在发动机曲轴后端加装一个电动/发电型盘式电机(ISG)是轻度混合动力汽车的典型结构;具有纯电力驱动功能的可作为全混合或混联式混合动力汽车的典型。丰田公司的Prius轿车即属于这类全混合汽车。目前我国若干汽车企业研制的混合动力汽车,大多采用ISG轻度混合或BSG微混合方案,主要是考虑这二种方案的技术难度较小,生产成本也较低。但是根据研究表明,混合动力汽车的节油率几乎与汽车功率的混合度和汽车的生产成正比上升(如图2)。因此,从长远来看,研制全混合电动汽车是一种必然趋势。
2.2 研发及市场情况
下面分别介绍混合动力乘用车和混合动力公交车的研发及市场情况。
以节油率最佳的丰田Prius汽车为例,在我国实测它与丰田花冠(Corrolla)油耗在不同工况下的对比数据如表3所示。各种工况下的平均节油率为39.6%,平均百公里可节油3.07L。
以97号汽油价格为5元/L计算,每百公里可节省油费15.35元,行驶20万km也仅省油费3.07万元,显然还不足以抵消购置混合动力汽车所增加的费用。据中国汽车工业协会统计,2006年一汽丰田普锐斯(Prius)销量仅为2152辆,占全国乘用车总销量的0.04%。考虑到我国用户对汽车售价的敏感性,这一销售业绩并不令人惊奇,可以认为在近期,如果没有政府的大力支持,混合动力乘用车在我国不会有很大的市场。
2.3 城市公交车的使用特点
在我国,城市公交车与私人乘用车的情况有很大的不同,具体归纳为以下三点:
(1)据统计我国城镇居民日常出门有70%是首选乘坐公交车,我国大部分城市政府都奉行公交车优先的交通政策,我国公交车的年产量和保有量都居世界第一;
(2)我国城市公交车大多由市政府补助公交企业采购,公交车是否符合节油减排要求,将是政府需要考虑的一个重要采购原则;
(3)从技术角度来分析,在城市工况下,公交车频繁起步、加速、制动和停车,要额外消耗许多燃油。表4列出了在国外四种典型城市工况下,汽车制动消耗能量(油耗)所占比例,其算数平均值达47.1%。即有近一半的燃油是被汽车频繁制动所消耗的,这就为混合动力公交车的节油减排留下了相当大的空间。
正是考虑到以上几个特点,我国至少有7~8家汽车企业将研发、生产混合动力公交车作为研发工作的重点。经过近几年的开发,虽然已取得了一系列重大成果,但公交车的节油率并未达到预计的要求,一辆总重15.5t,长11m的混合动力公交车,实际油耗大多为33~35L,平均34L/100km,若传统
11m公交车的平均油耗为40L/100km,则节油率仅15%。
2.4节油率难以进一步提高的原因
分析节油率难以进一步提高的原因主要有二个:
(1)汽车的制动过程十分短暂,一半不超过10s,在短短的几秒内,电机要求发出很大的电流,才能有效回收制动能量,但是电池的充电倍率只有放电倍率的一半,因此电池不能接受大电流充电。理论上汽车有50~60%的制动能量可回收,实际回收的制动能量<20%,最简单的改进办法是加大动力电池容量,例如至少加大容量一倍,回收的制动能量可由20%增加到40%。但这将大大增加整车成本和汽车自重,经济上可能是得不偿失。<
div="">
(2)混合动力公交车若采用停车断油,甚至滑行时即断油,可节油10%左右(4L/100km),实际上国产柴油机没有专门为混合动力汽车设计,一般不允许频繁的停车断油,否则供油系和废气增压器都可能损坏,严重影响柴油机寿命。其次,停车断油就必须装有电动转向油泵、电动空压机和电动空调系统,这又会大大增加整车成本和重量,二相权衡,不一定合算,所以近期大多未实现停车断油功能。因此,目前HEV的开发重点集中在节油降耗的工作上,针对以上问题,科研工作者提出了不同的解决方案,如利用超级电容器的功率密度达铅酸电池的10倍,具有快速吸收大电流充电的优异特性,在混合动力汽车制动时可以快速吸收能量,大大提高制动能量的回收率,此外它还具有循环寿命长、充放电效率高、耐低温特好以及免维护等优点。这种方案由于受到超级电容价格昂贵的影响,限制了它在混合动力汽车上的广泛应用。在进一步降低成本,提高能量密度后,超级电容器最有可能首先在混合动力公交车上得到应用。
3、插电式混合动力汽车
插电式混合动力汽车是最新的一代混合动力汽车类型,近年来受到各国政府、汽车企业和研究机构的普遍关注,国内外专家认为,PHEV有望在几年后得到广泛的推广使用。
据统计,法国城镇居民80%以上日均驾车里程少于50km,在美国,汽车驾驶者也有60%以上日均行驶里程少于50km,80%以上日均行驶里程少于
90km。PHEV特别适合于一周有5天仅驾车用于上下班,行驶里程50~90km之间的工薪族使用。PHEV是在混合动力汽车上增加了纯电动行驶工况,并且加大了动力电池容量,使PHEV采用纯电动工况可行驶50~90km,超过这一里程,即必须起动内燃机,采用混合驱动模式。所以PHEV的电池容量一般达5~10kW·h,约是纯电动汽车电池容量的30~50%,是一般混合动力汽车电池容量的3~5倍,可以说它是介于混合动力汽车与纯电动汽车之间的一种过渡性产品。与传统的内燃机汽车和一般混合动力汽车(HEV)对比(见表5),PHEV由于更多的依赖动力电池驱动汽车,因此它的燃油经济性进一步提高,二氧化碳和氮氧化物排放更少。由于动力电池容量的加大,每辆车的售价至少比一般HEV高2000美元。
图3示出了四种不同类型乘用车,它们的蓄电池容量与汽车价格、燃油消耗及尾气排放的对比关系。可见随着蓄电池容量的加大,汽车价格将上升,但是燃油消耗和尾气排放则下降。因此可以认为,电动汽车是以使用和损耗蓄电池为代价来换取节油、减排的效果,动力电池性/价比的大幅提升将是电动汽车能否迅速推广使用的关键所在。
一般HEV动力电池SOC仅在较小范围内波动(例如±2%~3%)因此循环寿命次数很长,而PHEV的动力电池SOC必须在很大的范围内波动(例如±40%),属于深充深放,因此循环工作寿命短得多,和纯电动汽车(PEV)相似。目前在PHEV上都采用先进的锂离子电池,由表1可知,锂离子电池每放出1kWh电能,能耗费为10.2元,相当于内燃每
kWh能耗费用的3倍。随着全球石油价格不断上升,燃油内燃机的能耗费用也将不断上升,而锂离子电池随着技术进步和产量的扩大,其能耗费用将不断下降(如图4所示),二者可能在2015至2020年内达到平衡点。因此PHEV有望在10年内得到大面积推广使用。
4、燃料电池电动汽车
早在1839年,英国人格罗孚就提出了氢和氧反应发电的原理。20世纪60年代,研发出了液氢和液氧发电的燃料电池,由美国UTC公司首先用于航天和军事用途。近20年来,由于石油危机和大气污染日趋严重,以质子交换膜式为代表的燃料电池技术,受到世界各国普遍重视。各大跨国汽车公司纷纷投入巨资,研发出了各种类型的燃料电池电动汽车(FCEV)。
4.1质子交换膜燃料电池(PEMFC)主要优点
(1)其排放生成物是水及水蒸汽,为零污染;
(2)能量转换效率可高达60~70%;
(3)无机械振动、低噪声、低热辐射;
(4)宇宙质量中有75%是氢,地球上氢也几乎是无处不在。氢还是化学元素中质量最轻、导热性和燃烧性最好的元素;
(5)氢的热值很高,1kg氢和3.8L汽油的热值相当。
4.2燃料电池电动汽车存在的技术、经济问题
在我国,国家科技部将研发燃料电池客车和燃料电池轿车列为“十五”和“十一五”计划“863”重大科技项目。并已取得一系列重大科技成果,但是在多年科研实践中,也暴露出一些技术、经济问题:
(1)燃料电池发动机的耐久性寿命短
一般仅1000~1200小时(国外达2200小时),燃料电池汽车行驶4~5万km,功率即下降~40%,和传统内燃机可普遍行驶50万km以上相比,差距很大;
(2)燃料电池发动机的制造成本居高不下
一般估计3万元/kW(国外成本约3000美元/kW),与传统内燃机仅200~350元/kW相比,差距巨大。由于其中如质子交换膜、炭纸、铂金属催化剂、高纯度石墨粉、氢回收泵、增压空气泵等关键部件均依靠进口,所以与国外相比,并没有成本优势;
(3)燃料电池发动机对工作环境的适应性很差
国产可在0~40℃气温下工作,低于0℃有结冰问题,高于40℃过热不能正常工作;此外对空气中的粉尘、一氧化碳、硫化物等都十分敏感,铂催化剂极易污染中毒失效;
(4)燃料电池汽车的使用成本过于高昂
例如高纯度(99.999%)高压氢(>200大巴)售价约80~100元/kg。按1kg氢可发10kW·h电能计算,仅燃料费即约为10元
/kW·h,按燃料电池发动机工作寿命1000小时计算,折旧费为30元/kWh。所以总的动力成本达40元/kW·h。与表1对照可知,至少在目前,由燃料电池发动机提供1kWh电能的成本远高于各种动力电池,这从一个侧面反映了作为汽车动力源,燃料电池汽车还有相当的距离。
4.3目前燃料电池电动汽车的研究课题
尽管存在如此多的问题,但是燃料电池仍然是人类迄今为止,发明的最清洁、安静又可无限再生的能源,值得我们为实现燃料电池电动汽车的产业化,付出更大的努力。
为此建议从以下几个方面进行工作:
(1)以更为创新的思维,对燃料电池的基本理论和基础材料进行深入研究,例如努力探寻非铂金属催化剂;努力研制抗电腐蚀金属双极板和耐高温(>110℃)高机械强度质子交换膜等;
(2)努力实现如炭纸、增压空气泵等关键零部件的国产化,以降低整机成本;
(3)进一步提高整机的优化集成技术,着力提高整机的耐候性(高、低气温变化)、抗大气污染能力和耐电负荷急剧变化能力等。
5、电机及电动车轮的分类
电动汽车驱动电机是所有电动汽车必不可少的关键部件。目前使用较多的有直流有刷、永磁无刷、交流感应和开关磁阻等四种电机。
美国和德国开发的电动汽车大多采用交流感应电机,主要优点是价格较低、效率高、重量轻,但启动转矩小。日本研制的电动汽车几乎全部使用永磁无刷电机,其主要优点是效率可以比交流感应电机高6个百分点,但价格较贵,永磁材料一般仅耐热120℃以下。开关磁阻电机结构较新,优点是结构简单、可靠、成本较低、起动性能好,没有大的冲击电流,它兼有交流感应电机变频调速和直流电机调速的优点,缺点是噪声较大,但仍有一定改进余地。表6列出四类电机比较。
显然表6中四种电机各有优缺点,但是对于电动汽车而言,由于电能是由各类电池提供,价格昂贵而弥足珍贵,所以使用相对效率最高的永磁无刷电机是较为合理的,它已被广泛用于功率小于100kW的现代电动汽车上。
此外,在国外已有越来越多的电动汽车采用性能先进的电动轮(又称轮毂电机),它用电机(多为永磁无刷式)直接驱动车轮,因此无传统汽车的变速箱、传动轴、驱动桥等复杂的机械传动部件,汽车结构大大简化。但是它要求电机在低转速下有很大的扭矩,特别是对于军用越野车,要求电机基点转速∶最高转速=1∶10(见图5)。近几年,美、英、法、德等国纷纷将电动轮技术应用于军用越野车和轻型坦克上,并取得了重大成果。例如美海军陆战队在“悍马”基础上研制出串联式“影子”新型混合动力越野车,采用了电动轮技术,其结构及主要技术参数如表7所示。与传统“悍马”车对比试验,在同样侦察试验条件下,“悍马”耗油472kg,而“影子”仅耗油200kg;同一越野路段,“悍马”耗时32分钟跑完,而“影子”仅耗时13分50秒,此外它还具有在纯电动模式下,汽车静音、无“热痕迹”等优点。如此优异的性能,据闻美军已决定停产传统“悍马”车,全部改产新型混合动力电动轮驱动的“影子”型军车。这一重要发展趋势,应引起高度关注。
二、电动汽车发展趋势
综上所述,可以从技术/经济分析出发,对电动汽车技术的现状和未来作如下结论:
(1)在目前国内市场价格的基础上,可粗略计算出各种提供电能技术的价格比。即电网供电∶柴油机供电∶铅酸电池供电∶镍氢电池供电∶锂离子电池供电∶燃料电池供电=1∶6∶6∶19.2∶20.4∶80。这从一个侧面反映了各种供电方式距离电动汽车市场的远近。当然,随着石油价格的上升、电池技术的进步,这些比例关系将发生很大的变化;
(2)由于铅酸电池的供电成本大体和柴油机供电相等,因此它仍然是低端电动车市场的主要动力电池。磷酸锂离子电池技术进步较快,它最有可能成为铅酸电池的竞争对手,率先成为高端电动车市场的主要动力电池;
(3)由于混合动力汽车仅需装用纯电动汽车1/10的动力电池容量,整车有较为接近市场的性/价比,因此它仍将是近期实现产业化的主要电动汽车种类。考虑到我国国情,目前仍应大力推广使用混合动力大客车,进一步降低制造成本,减少油耗和排放;
(4)在锂离子电池性/价比进一步提升后,外接充电式混合动力汽车(PHEV)有望成为理想的上班族乘用车,它可大幅度减少油耗和降低排放,但是由于较高的价格,它可能首先在发达国家得到推广应用;
(5)燃料电池虽然是理想的清洁能源,但是目前它的性/价比太低,要达到可以进入市场的性/价比,可说是任重而道远,必须从基础材料和基本理论上有重大突破,才可能进入汽车市场;
(6)电动轮已成为国外电力驱动技术的重要发展趋势,并已在军用越野车上得到实际应用,证实它在技术/经济上的重要优势,我国虽也有不少单位研发,但始终未进入“863”计划,技术进步缓慢,因此有必要奋起直追,尽快掌握这一先进的电驱动技术。
❷ 列举电动车的5个以上的缺点并加以改进
1、充电条件不够普及
电动汽车卖得最欢的要数一二线限牌限行城市,恰恰这些城市的停车位缺口巨大,有独立充电条件的车主属于极少数,没有条件的只能依赖公共充电站。依赖公共充电站的车主基本上就是买了一个爹,到稍微远一点的地方办事都要提前看看附近有没有充电站,有充电站还要担心有没有车位,万一没有车位还要提前找好备用充电站。
而且充电桩的收费也不便宜,电费基本上在1元/度左右,服务费在0.5元/度至0.8元/度之间,综合单价在1.5元/度至1.8元/度之间。按主流电动汽车百公里15度电算,一公里也要花费将近3毛了,要是在冬天,估计就不止了。
2、蓄电池受低温影响大
蓄电池因为其特性在低温环境下充放电速度均会受到明显影响。5度以下BMS为了保护电池会对充放电进行限流,基本上是对半折。同时,动能回收力度也比正常温度下降低50%,制动力下降明显。
急加速情况下容易导致锂离子结晶,造成电池不可逆的损耗。最主要是续航里程大大缩短,对于本来续航里程就不多的电动汽车来说,低温真的是把杀猪刀。如果车内再打开空调暖风……
3、充电速度慢
电动汽车通常有交流慢充和直流快充两个充电口,其实和手机充电类似,不管是快充还是慢充,到达某个数值点(一般是80%)时BMS为了保护电池,充电功率会逐渐减小。
所以即便是快充,也无法在短时间内将电充满,再退一步说,每次快充80%电就不充了,按车企宣传资料来看,也至少需要半个小时。这要是有个急事真能把人急死,如果是冬天,这充电速度还得打个折扣。
4、跑高速太费电
燃油车有个名词叫经济时速,经济时速是发动机处于最高效工况下的时速,也是最省油的时速,相比城市用车,跑高速能给燃油车带来高效工况,这是因为内燃机高效工况范围小。但是电动机比内燃机高效工况范围要大得多,随着车速越快,电动机消耗的能量越大,续航里程成阶段性降低,而不是线性降低。
另外,电池的能量密度相比汽油要低很多。动力电池能量密度最高也不过0.2KWh/kg,而汽油能量密度是12.8KWh/kg,高速巡航下,能量密度越高优势越明显。
5、售价高保值率低
大家可以对比下,市场上同类型车的燃油版和电动版的售价,你会发现电动汽车的售价比燃油版要高出好几万,如果你说这好几万和燃油版的几年油费差不多,那么我们再看看几年后的保值率,也可以称之为残值。根据2020年度中国汽车保值率研究报告显示,各级别TOP10燃油车型第5年保值率平均在48.2%。
电动汽车保值率很大一部分受制于电池容量,而电池容量随使用时间和行驶里程的增多而衰减。根据纯电动汽车保值率数据推算,以“行业标杆”特斯拉为例,Model 3、Model X和Model S三款车型第5年的保值率分别为46.83%、41.34%和34.15%,但是和燃油车相比还是存在差距。
❸ 怎么使电动汽车锂电池在动力速度续航稳定的基础上小型化
纯电动汽车的普及,主要受到续驶里程的影响,以及充电基础配套设施的建设。这也是广大消费者普遍关键的一个问题。还有一个客观的因素就是国家政策的支持,当然这不是影响电动汽车续驶里程的因素,这里就不做多说明。接下来为大家分析一下影响纯电动汽车续驶里程的主要因素有哪些? 电动汽车能否真正上路,最关键的因素就是续驶里程的提高。目前,各大汽车厂商在汽车动力方面的研究,大多集中在电池这一环节。不可否认,电池作为电动汽车的动力源,理应摆在最重要的位置。然而,要大力提高电动汽车的续驶里程,不仅仅是要装配大功率的电池组,同时还有很多细节需要用当前的技术去克服。 1. 电动汽车的行驶环境 相同的电动车在不同环境下行驶,将会达到不同的最大里程数。首先气温就对当前电动车广泛使用的锂电池影响很大,锂电池的能量应用属于氧化还原反应,通过化学反应释放电离子,从而达到充放电。由于锂元素的化学特性非常活泼,因此在低温和高温状态下(冬天/夏天),反应强度不同,放电密度不同,电池的使用时间不同,而造成汽车的行驶里程不同。 其次,同传统汽车一样,风向、风力、道路条件及城市交通状况也是影响电动汽车续驶里程的因素(城市交通状况方面,目前轻型混合动力驱动系统在提高电池寿命和环保方面发挥着重要作用)。 2. 滚动阻力和空气阻力 在理论力学中,物体滚动时受到的阻碍作用被称为滚动阻力。滚动阻力通常是由重力引起的,它是一种力矩作用。也就是说,如果汽车越重,运动时所承受的滚动阻力也就越大。因此,减少滚动系数可在一定程度上提升电动汽车的续驶里程。 电动汽车能否真正上路,最关键的因素就是续驶里程的提高。目前,各大汽车厂商在汽车动力方面的研究,大多集中在电池这一环节。不可否认,电池作为电动汽车的动力源,理应摆在最重要的位置。然而,要大力提高电动汽车的续驶里程,不仅仅是要装配大功率的电池组,同时还有很多细节需要用当前的技术去克服。 空气阻力,顾名思义,是汽车在行驶中与空气产生摩擦而产生的阻力。由于电动汽车的外形设计与电池、电机的位置有关,因此,相比传统汽车,电动汽车的外形设计弹性较大。通过更合理摆放汽车内部组成零件,可得到更合理的外观设计,以此来减少空气阻力系数,续驶里程可有相应提高。 3. 电池参数与性能 电池是电动汽车最重要的部分,需要探讨的地方很多。这里,只是简单分析一下如何通过改进电池技术来提高电动汽车的续驶里程,其中包括电池重量、形状、能量密度、放电率。 由于电池重量在电动汽车总重量中占有极高的比例,其大小将决定滚动阻力系数,从而影响续驶里程。 电池的形状也是需要攻克的设计难题之一,当前电动汽车领域使用最多的为柱状锂电池,上百块的电池排列组合会造成体积过大,从而影响汽车减少风阻的结构设计,间接影响了续驶里程。目前,日产聆风和雪佛兰沃蓝达使用的新式板状锂电池在体积设计上则占有一定优势,为将来电动汽车结构的设计将起到推动作用。 能量密度和放电率都是电池影响续驶里程的重要因素,电池能量高、放电时间长才是电动汽车延长续驶里程的关键。电池方面还有很长的路要走,相同体积下,性能更高的纳米技术电池和固态技术电池目前还在起步阶段。 4. 辅助装置的能量消耗 辅助装置不仅仅指我们熟悉的照明、音响、空调和车载控制系统,还包括制动系统的空气压缩机、转向系统的液压泵等动力辅助系统。这些辅助设施除空调外,将综合消耗总能量的6%-12%。如果这些能量消耗能够降低,就可提供更多的电量输出给动力系统。从而延长续驶里程。 综上所述,要提高纯电动汽车的续驶里程,主要是提高蓄电池的续航能力,就是提高蓄电池的性能。还有另外一个方面就是车身的阻力,以及车身的重要,辅助设备的耗能情况。这些都需要科研工作者辛勤工作去改善。总体来说,纯电动汽车行业发展情况还是很乐观的,特别是在地球气候环境的日益恶劣,以及石油资源日益枯竭的情情况下。
❹ 电动车的电池蓄电能力下降,除了换新的还有什么办法改善吗
还有,
但比较复杂,就是修复加水。
通常在电池使用半年或更久的电动车电池。电压维持在高位长时间不跳灯,并伴有电池发热现象。
(准备工具):
1. 小一字螺丝刀
2. 大一字螺丝刀
3. 5ML注射用针管
4. 吊瓶用输液管
5. 娃哈哈纯净水(屈臣氏蒸馏水最好)
6. 透明胶带或PVC胶水
一、 48V12A 铅酸电池(4节)(20AH电池如法炮制)
二、 撬开电池上的盖板:
击打时会听见“啪啪”的断裂声,不用害怕,是电池盖与电池之间的胶水被撬裂的声音,撬盖时注意不要用力过猛导致螺丝刀碰到左侧电池两端,以免发生短路,损坏电池。
用5ML针管抽取5ML娃哈哈纯净水注入到每个小孔里面(20A的加10--15ML,10A的5~10ML)!针头前面的塑料管为吊瓶(水)用输液管,剪下5~10CM按到针管上即可,千万不要用针管自带的针头,因为针头见酸后会分离导电金属离子,会导致电池自放电。
1.使用工具小一字螺丝刀和 大一字螺丝刀:
2首先将小一字螺丝刀插入电池盖板旁边的缝隙中
3.顺着撬开的缝隙在小一字螺丝刀右侧插入大一字螺丝刀,然后拔出小一字螺丝刀插入到大一字螺丝刀右侧,如此交替
当大一字螺丝刀移到电池右侧中间后、拔出小一字螺丝刀,用左手把住电池,用右手向左侧击打螺丝刀:
四、充电
如果条件允许最好每个电池单独充电(16.5V单体充电),我是用的电动车电池充电器直接充电的。补水后第一次充电请不要按上橡胶帽,用报纸盖在上面就可以了!
充电6小时候,转灯又浮充了2小时。(充电时保持室内通风,避免排斥出的气体浓度过高遇明火发生爆炸。充满电后看电池孔里面的白色纤维,以看不到流动的水为准,如果太干就补点水,如果有流动的水就继续开帽充电。让水继续蒸发掉。如果感觉湿湿的就表示正好)
五.充电完毕后,盖上橡胶帽和盖板,用透明胶带粘上,在电池盖板边上的缝隙处扎几个眼,用来电池充电时排气。
❺ 我的电动车电瓶48V12A,电机是350W,现在感觉没力也不快,有什么办法可以改善吗
因为电动车电池有一定的使用寿命,如果电池经常不规律充电,就会加速电池老化的速度,甚至出现充鼓的现象。
而一旦电池充鼓,电动车续航就会大幅下将,那么就会导致电动车出现动力不足无力的情况。对于这种问题,一般的解决方式是选择换新。因为这样的电池再次修复,也只是起到微弱的作用。
电动车存在外阻力一般表现为两种形式,一种是电动车胎压问题,另一种是刹车存在抱死的情况。如果电动车胎压不足,那么就会使得电动车在行驶过程中阻力增大,导致电动车出现动力不足无力的情况。
对于这种问题,一般的解决方式是及时打气,让胎压保持合理的范围(最佳胎压在340kpa左右)。而如果电动车刹车存在抱死的情况,那么也会电动车在行驶中,不仅会阻力增大,导致电动车出现动力不足无力的情况,而且还会出现异常响声。对于这种情况,最好的解决方式是调整刹车,使其在合理的位置。
❻ 如何延长电动汽车电池使用寿命 详细03
如何延长电动汽车电池使用寿命 每五次汽车故障就有一次是电池造成的。在未来数年内,随着电传线控,发动/熄火引擎管理和混合动力(电力/燃气)等汽车技术日益普及,这一问题将变得越来越严重。 为了减少故障,需要精确地检测电池的电压、电流和温度,对结果进行预处理,计算充电状态和运行状态,将结果发送到发动机控制单元(ECU),以及控制充电功能。 现代汽车诞生于20 世纪初。第一辆汽车依靠手动启动,需要很大的力量,存在很高的风险,汽车的这种"手摇曲柄"造成了很多死亡事故。1902 年,第一台电池启动马达研制成功,到1920 年,所有的汽车都已采用电启动。 最初使用的是干电池,当电能耗尽时,必须予以更换。不久之后,液体电池(即古老的铅酸电池)就取代了干电池。铅酸电池的优点是当发动机工作时,它可以从中充电。 在上世纪,铅酸电池几乎没有什么变化,最后一次主要改进是对其进行密封。真正改变的是对它的需求。起初,电池仅仅用于发动汽车、鸣喇叭和为车灯供电。如今,在点火之前,汽车的所有电气系统都要靠它供电。 激增的新型电子设备不仅仅是GPS 和DVD 播放器等消费电子设备。如今,发动机控制单元(ECU)、电动车窗和电动座椅之类的车身电子设备已成为许多基本车型的标准配置。呈指数级增加的负载已经产生严重影响,电气系统造成的故障日益增多就是明证。根据ADAC 和RAC 统计,在所有汽车故障中,几乎有 36%可归因于电气故障。如果对该数字进行分析,可以发现50%以上的故障是由铅酸电池这一组件造成的。 评定电池的健康状况以下两个关键特性可以反映铅酸电池的健康状况: (1)充电状态(SoC):SoC 指示电池可以提供多少电荷,用电池额定容量(即新电池的SoC)的百分比表示。 (2)运行状态(SoH):SoH 指示电池可以储存多少电荷。充电状态充电状态指示好比是电池的"燃油表"。计算SoC 的方法有很多,其中最常用的有两个:开路电压测量法和库仑测定法(也称库仑计数法)。 (1)开路电压(VOC)测量法:电池空载时的开路电压与其充电状态之间成线性关系。这种计算方法有两个基本限制:一是为了计算SoC,电池必须开路,不连接负载;二是这种测量仅在经过相当长的稳定期后才精确。这些局限使得 VOC 方法不适合在线计算SoC。该方法通常在汽车维修店中使用,在那里电池被卸下,可以用电压表测量电池正负极之间的电压。 (2)库仑测定法:这种方法用库仑计数求取电流对时间的积分,从而确定 SoC。利用该方法可以实时计算SoC,即使电池处在负载条件下。然而,库仑测定法的误差会随着时间推移而增大。 一般是综合运用开路电压和库仑计数法来计算电池的充电状态。 运行状态运行状态反映的是电池的一般状态,以及其与新电池相比储存电荷的能力。由于电池本身的性质,SoH 计算非常复杂,依赖于对电池化学成分和环境的了解。电池的 SoH 受很多因素的影响,包括充电接受能力、内部阻抗、电压、自放电和温度。 一般认为难以在汽车这样的环境中实时测量这些因素。在启动阶段(引擎起动),电池处在最大负载下,此时最能反映电池的SoH。 Bosch、Hella 等领先汽车电池传感器开发商实际使用的SoC 和SoH 计算方法属于高度机密,常常还受专利保护。作为知识产权的拥有者,他们通常与 Varta 和Moll 等电池制造商密切合作开发这些算法。 图1.分立电池检测解决方案该电路可以分为三个部分: (1)电池检测电池电压通过一个直接从电池正极分接出来的阻性衰减器来检测。为检测电流,将一个检测电阻(12V 应用一般使用100mΩ )放在电池负极与地之间。在这种配置中,汽车的金属底盘一般为地,检测电阻安装在电池的电流回路中。在其它配置中,电池的负极是地。对于SoH 计算,还必须检测电池的温度。 (2)微控制器微控制器或MCU 主要完成两个任务。第一个任务是处理模数转换器(ADC)的结果。这项工作可能很简单,例如仅执行基本滤波;也可能很复杂,例如计算 SoC 和 SoH。实际的功能取决于 MCU 的处理能力和汽车制造商的需求。第二个任务是将处理过的数据经由通信接口发送到ECU。 (3)通信接口目前,本地互连网络(LIN)接口是电池传感器和ECU 之间最常用的通信接口。LIN 是广为人知的CAN 协议的单线、低成本替代方案。 这是电池检测最简单的配置。然而,大多数精密电池检测算法要求对电池电压与电流,或者电池电压、电流与温度同时采样。 为了进行同步采样,最多需要增加两个模数转换器。此外,ADC 和MCU 需要调节电源以便正确工作,导致电路复杂性增加。这已经由LIN 收发器制造商通过集成调节电源而得到解决。汽车精密电池检测的下一步发展是集成ADC、 MCU 和LIN 收发器,例如ADI 公司的ADuC703x 系列精密模拟微控制器。 ADuC703x 提供两个或三个8 ksps、16 位Σ -Δ ADC,一个20.48MHz ARM7TDMI MCU,以及一个集成LIN v2.0 兼容收发器。ADuC703x 系列片内集成低压差调节器,可以直接从铅酸电池供电。为了满足汽车电池检测的需求,前端包括如下器件:一个电压衰减器,用于监控电池电压;一个可编程增益放大器,与100mΩ 电阻一起使用时,支持测量1A 以下到1500A 的满量程电流;一个累加器,支持库仑计数而无需软件监控;以及一个片内温度传感器。 图2.采用集成器件的解决方案示例几年前,只有高档汽车才配有电池传感器。如今,安装小型电子装置的中低档汽车越来越多,而十年前只能在高端车型中见到。铅酸电池所引起的故障数量因此不断增加。过不了几年,每辆汽车都会安装电池传感器,从而降低日益增多的电子装置引发故障的风险。
❼ 如何延长电动车电池寿命
记得有一次讲到汽车的启停功能的时候,很多人都说启停功能会影响电瓶的寿命。其实有启停功能的车子的电瓶是加强版的蓄电池,和普通电瓶是有区别的,总的来说使用寿命其实是一样的。主要影响蓄电池使用寿命在于车子的使用者的使用习惯!
希望对你有帮助!来自湛江金富汽车的从业者!
❽ 2020以后,电动车的铅酸电池如何实现全面锂电化
新能源汽车已经火了有几年了,但是新能源电动汽车的动力电池却依旧很神秘。成本占到电动汽车40%左右的动力电池,是电动汽车最为核心的总成部件,同时也可能是阻碍电动汽车普及发展的最大障碍。一方面是电动汽车动力电池的技术瓶颈限制,导致电动汽车单次续航里程短,电能补给时间长;另一方面是电动汽车动力电池成本高,特别是在脱离补贴以后,对整车的价格影响大。
如此一来,动力电池的成本可以大幅下降,电池的售后也能更专业化,续航里程也可以通过直接更换电池来提升,到时候我也可以回老家开个锂电池售后维修点,就开在超威电池维修点旁边。大家如果也想开维修店的欢迎探讨,抱团取暖,没准能一起开个电池厂做标准电池哦!
@电车换电说,专门分享一些电动汽车,特别是电动汽车电池更换方面的信息和资料,感兴趣的读者可以关注哦!
本文来源于汽车之家车家号作者,不代表汽车之家的观点立场。
❾ 纯电动汽车续航一直是个问题,未来十几年会有改善吗
纯电动汽车续航一直在增长,从来没有停止,未来十几年肯定会有大幅改善,这一点毋庸置疑。从目前各大电池厂商和汽车厂商的技术上来看,纯电动汽车续航能力大幅提升的基础已经具备,当下最需要的是“拉出来溜溜”,转化为现车之后,让大众“品尝”。
总之,纯电动汽车续航虽然一直是行业内的“痛”,但是也是各大厂商的“爱”,因为全球资本都在注视这个问题,谁解决问题,并且得到实施,谁的未来就会更光明,所以未来十几年纯电动汽车续航绝对会得到大幅改善。
❿ 电动汽车面临的问题有什么改进方法
1、最大的问题是电池续航里程不像商家说的那么美好。比亚迪就因此饱受诟病。2、充电桩不如加油站那么方便,活动范围窄。3、维修尚未普及。4、动力——电动机技术已经是强弩之末,现在的新技术“三相同步电机”效率更高、体积更小,正在进入汽车领域。