电动汽车控制系统功能
① 纯电动汽车控制系统的作用
电机控制器,主要功能就是控制电机输出扭矩,使车辆行驶起来,整个电控系统相当于燃油车的发动机及发动机控制器。
② 电动车控制器的功能是
如下:
1、超静音设计技术:独特的电流控制算法,能适用于任何一款无刷电动车电机,并且具有相当的控制效果,提高了电动车控制器的普遍适应性,使电动车电机和控制器不再需要匹配。
2、恒流控制技术:电动车控制器堵转电流和动态运行电流完全一致,保证了电池的寿命,并且提高了电动车电机的启动转矩。
系统组成
电动车电机的控制系统一般由电动机、功率变换器、传感器和电动车控制器组成。
电动车电动机控制系统应根据其控制算法的复杂程度,选择比较合适的微处理器系统。较为简单的有选用单片机控制器,复杂的可使用DSP控制器,最新出现的电动机驱动专用芯片可以满足一些辅助系统电机控制需求。对电动汽车电动机控制器而言,一般较为复杂宜使用DSP处理器。
③ 电动汽车的电池管理系统(BMS)是如何工作的如何能监测电池管理系统的性能是否可靠
这些测试需要用到的测量仪器:
高精度多通道的记录仪(例如MX100)长时间监测记录电压、电流和温度等参数;
16通道并且通道间相互隔离的示波记录仪(例如:DL850E) 采集快速信号,并用不同模块记录更多类型的参数;
高精度的功率分析仪(例如WT3000E)对充电效率、电池电量等进行准确测量;
数字示波器(例如:DLM2000)的CAN总线分析功能可以对电池管理系统中的CAN数据进行实时解码,捕获错误帧;
录波仪(例如:DL850EV)通过CAN总线监测模块,对电池管理系统的CAN总线中传输的各种传感器信号进行监测。
④ 电动汽车的典型控制系统主要有哪些
电机控制器的主要由如下几部分组成:
1、电子控制模块(ElectronicController)包括硬件电路和相应的控制软件。硬件电路主要包括微处理器及其最小系统、对电机电流,电压,转速,温度等状态的监测电路、各种硬件保护电路,以及与整车控制器、电池管理系统等外部控制单元数据交互的通信电路。控制软件根据不同类型电机的特点实现相应的控制算法。
2、驱动器(Driver)将微控制器对电机的控制信号转换为驱动功率变换器的驱动信号,并实现功率信号和控制信号的隔离。
3、功率变换模块(PowerConverter )对电机电流进行控制。电动汽车经常使用的功率器件有大功率晶体管、门极可关断晶闸管、功率场效应管、绝缘栅双极晶体管以及智能功率模块等。
电池技术、电机驱动及其控制技术、能量管理技术以及电动汽车整车技术为电动汽车四大关键技术。电控系统用于控制电池、电机等组件,其功能包括:电池管理,发动机、电动机能量管理等。电控系统由ECU 等控制系统、传感器等感应系统、驾驶员意图识别等子系统组成。
电控系统的材料成本占比不高,但需要经过多次试验才能掌握关键算法,尤其是混合动力汽车涉及油、电混合的控制策略,技术壁垒较高。
电机控制器作为新能源汽车中连接电池与电机的电能转换单元,是电机驱动及控制系统的核心,主要包含IGBT功率半导体模块及其关联电路等硬件部分以及电机控制算法及逻辑保护等软件部分。
电机驱动控制系统(包括驱动电机和电机控制器)是新能源汽车车辆行使中的主要执行结构,控制和驱动特性决定了汽车行驶的主要性能指标。
⑤ 电动汽车的电池能量管理系统一般有哪些功能
电动汽车电池管理系统(BMS)是连接车载动力电池和电动汽车的重要纽带,其主要功能包括:电池物理参数实时监测;电池状态估计;在线诊断与预警;充、放电与预充控制;均衡管理和热管理等。
相关图片2
⑥ 电动汽车中的整车控制器什么作用可以直接用电机控制器代替吗
整车控制器肯定控制整个车辆,至少包括电机,驱动电池,充电过程。电机控制器只能控制电机
⑦ 电动汽车整车控制系统的作用
新能源汽车作为一种绿色的运输工具在环保、节能以及驾驶性能等方面具有诸多内燃机汽车无法比拟的优点,其是由多个子系统构成的一个复杂系统,主要包括电池、电机、制动等动力系统以及其它附件(如图1所示)。各子系统几乎都通过自己的控制单元(ECU)来完成各自功能和目标。为了满足整车动力性、经济性、安全性和舒适性的目标,一方面必须具有智能化的人车交互接口,另一方面,各系统还必须彼此协作,优化匹配,这项任务需要由控制系统中的整车控制器来完成。基于总线的分布式控制网络是使众多子系统实现协同控制的理想途径。由于CAN总线具有造价低廉、传输速率高、安全性可靠性高、纠错能力强和实时性好等优点,己广泛应用于中、低价位汽车的实时分布式控制网络。随着越来越多的汽车制造厂家采用CAN协议,CAN逐渐成为通用标准。采用总线网络可大大减少各设备间的连接信号线束,并提高系统监控水平。另外,在不减少其可靠性前提下,可以很方便地增加新的控制单元,拓展网络系统功能。
下面对每个模块功能进行简要的说明:
1、开关量调理模块
开关量调理模块,用于开关输入量的电平转换和整型,其一端与多个开关量传感器相连,另一端与微控制器相接;
2、继电器驱动模块
继电器驱动模块,用于驱动多个继电器,其一端通过光电隔离器与微控制器相连,另一端与多个继电器相接;
3、高速CAN总线接口模块
高速CAN总线接口模块,用于提供高速CAN总线接口,其一端通过光电隔离器与微控制器相连,另一端与系统高速CAN总线相接;
4、电源模块
电源模块,可为微处理器和各输入和输出模块提供隔离电源,并对蓄电池电压进行监控,与微控制器相连;
5、模拟量输入和输出模块
模拟量输入和输出模块,可采集0~5V模拟信号,并可输出0~4.095V的模拟电压信号。
6、脉冲信号输入和输出模块
可采集脉冲信号并调理,范围1Hz—20KHZ, 幅度6---50V;输出PWM信号 范围1HZ—10KHZ,幅度0—14V。 7、故障和数据存储模块铁电存储器可以存储标定的数据和故障码,车辆特征参数等,容量32K。
二、整车控制器功能说明
新能源汽车整车控制器基本上以下几项功能:
1. 对汽车行驶控制的功能
新能源汽车的动力电机必须按照驾驶员意图输出驱动或制动扭矩。当驾驶员踩下加速踏板或制动踏板,动力电机要输出一定的驱动功率或再生制动功率。踏板开度越大,动力电机的输出功率越大。因此,整车控制器要合理解释驾驶员操作;接收整车各子系统的反馈信息,为驾驶员提供决策反馈;对整车各子系统的发送控制指令,以实现车辆的正常行驶。
2. 整车的网络化管理
在现代汽车中,有众多电子控制单元和测量仪器,它们之间存在着数据交换,如何让这种数据交换快捷、有效、无故障的传输成为一个问题,为了解决这个问题,德国BOSCH公司于20世纪80年代研制出了控制器局域网(CAN)。在电动汽车中,电子控制单元比传统燃油车更多更复杂,因此,CAN总线的应用势在必行。整车控制器是电动汽车众多控制器中的一个,是CAN总线中的一个节点。在整车网络管理中,整车控制器是信息控制的中心,负责信息的组织与传输,网络状态的监控,网络节点的管理以及网络故障的诊断与处理。
3. 制动能量回馈控制
新能源汽车以电动机作为驱动转矩的输出机构。电动机具有回馈制动的性能,此时电动机作为发电机,利用电动汽车的制动能量发电,同时将此能量存储在储能装置中,当满足充电条件时,将能量反充给动力电池组。在这一过程中,整车控制器根据加速踏板和制动踏板的开度以及动力电池的SOC值来判断某一时刻能否进行制动能量回馈,如果可以进行,整车控制器向电机控制器发出制动指令,回收能部分能量。
4. 整车能量管理和优化
在纯电动汽车中,电池除了给动力电机供电以外,还要给电动附件供电,因此,为了获得最大的续驶里程,整车控制器将负责整车的能量管理,以提高能量的利用率。在电池的SOC值比较低的时候,整车控制器将对某些电动附件发出指令,限制电动附件的输出功率,来增加续驶里程。
5. 车辆状态的监测和显示
整车控制器应该对车辆的状态进行实时检测,并且将各个子系统的信息发送给车载信息显示系统,其过程是通过传感器和CAN总线,检测车辆状态及其各子系统状态信息,驱动显示仪表,将状态信息和故障诊断信息经过显示仪表显示出来。显示内容包括:电机的转速、车速,电池的电量,故障信息等。
6. 故障诊断与处理
连续监视整车电控系统,进行故障诊断。故障指示灯指示出故障类别和部分故障码。根据故障内容,及时进行相应安全保护处理。对于不太严重的故障,能做到低速行驶到附近维修站进行检修。
7. 外接充电管理
实现充电的连接,监控充电过程,报告充电状态,充电结束。
8. 诊断设备的在线诊断和下线检测
负责与外部诊断设备的连接和诊断通讯,实现UDS诊断服务,包括数据流读取,故障码的读和清除,控制端口的调试。
⑧ 新能源汽车电机控制器的功能
电动汽车电机控制器的作用,电机控制器是控制电机驱动整车行驶的控制单元,属于电动汽车核心零部件。电机控制器具有CAN通讯功能、过流保护、过载保护、欠压保护、过压保护、缺相保护、能量回馈、限功率、高压互锁、故障上报等功能。电机控制器技术目前比较成熟,它具有集成度高、功率密度高、寿命长、输出稳定等特点。
一、电动汽车电机控制器的作用——功能介绍
电机控制器具备IGBT结温估算、变载频和过调制技术,系统效率高、动力强、可靠性高,具有CAN唤醒和休眠功能,降低电机控制器静态功耗,避免蓄电池馈电。电机控制器具备制动回馈功能,当整车刹车制动时,电机控制器通过制动回馈将电能存在动力电池中,提高续航里程。放流坡功能是为了避免有坡道起步时,当制动踏板向油门踏板切换的过程中车辆后溜,当发现车辆后溜时,电机控制器进入防溜坡转态,控制器自动调整转矩输出客服车辆因重力引起的后溜。
电机控制器还具备定速巡航功能,在不踩油门踏板的情况下,电机控制器可输出力矩自动按照VCU设定车速,保持车辆以固定的速度行驶,以节省驾驶员体力,提高驾驶体验。怠速功能,实现汽车的蠕行功能,根据电机转速合理的输出扭矩,使得电机转速维持在一个较小的转速区间。防抖功能,可以根据客户的需求增加整车防抖功能,保证车辆的舒适性。主动放电功能,整车停止运行且电池与电机控制器断开以后,电机控制器器应具备将母线电容上电荷释放的功能,实木线电压降低至人体安全电压。UDS协议,UDS主要用于整车的生产制造及售后维修,基于UDS协议,通过诊断仪可以准确的判断故障原因,提高维修效率。
二、电动汽车电机控制器的作用——使用环境
电机控制器工作温度范围:-40~85℃,其中65℃以上就会进行限制功率输出。湿度要求,继承控制器在相对湿度不超过95%的情况下能正常工作,应在其表面温度低于露点的情况下,及电机控制器在表面产生冷凝也能安全工作,在海拔3000米以下可以正常工作,其中防尘防水等级IP67。
三、电动汽车电机控制器的作用——电机控制器常见参数
电机控制器输入电压有336V的平台,也有540VDC的电压平台。除了电压还有而定输出电流、峰值输出电流、峰值运行时间、变载频范围、控制器最高效率、最高输出频率、冷却液进水口温度等。
四、总结
电机控制器的稳定性决定了整车操稳性、动力性、可靠性、安全性,所以在控制器的选型设计时一定要考虑安装空间合理性、输出功率充足性、电流曲线合理性、制动能量回馈平滑性。
⑨ 纯电动汽车动力电池管理系统有哪些功能
纯电动汽车动力电池管理系统功能有数据采集、电池状态估计、能量管理、热管理、安全管理和通信功能等。
一、数据采集
电池管理系统的所有算法、电动车的能量控制策略、驾驶员的驾驶信息等都以采集的数据作为输入,采样速度、精度和前置滤波特性是影响电池管理系统性能的重要指标。电动汽车管理系统的采样速率一般要求大于200Hz。
电池能量管理系统按电池包内安装的传感器提供的信号对电池进行管理。电池箱内通常有温度传感器及电压、电流或内阻的测量装置。
二 、电池状态估计
电动汽车电池状态主要包括SOC和SOH等。是车辆进行能量或功率匹配和控制的重要依据。对于纯电动车来说使驾驶人员知道车辆的续驶里程,以便决定如何行驶,在能量允许的条件下使车辆行驶到具有充电功能的地方,补充电量防止半路抛锚。
三、能量管理
在能量管理中,电流、电压、温度、SOC、SOH 参数作为输入用来完成以下功能:控制充电过程,包括均衡充电;用SOC、SOH和温度限制电动汽车电源系统的输入、输出功率与能量;放电过程的监控与管理。
四、安全管理
电动汽车电池管理系统的安全管理具体功能包括监测电池的电压、电流、温度等是否超过限制;防止电池过度放电,尤其是防止个别电池单体过度放电,防止电池过热而发生热失控;
防止电池出现能量回馈时的过充电;在电源系统出现绝缘度下降时对整车多能源控制系统进行报警或强行切断电源以及电源系统出现短路情况下的保护等。
五、热管理
对大功率放电和高温条件下使用的电池组,电池的热管理尤为必要。热管理的功能是使电池单体温度均衡,并保持在合理的范围内,对高温电池实施冷却,在低温条件下对电池进行加热等。由于温度的变化对其他参数都有影响,所以一般都以电池模块的温度来做为控制的指令信号。
六、通信功能
电池管理系统与车载设备或非车载设备的通信是其重要功能之一。根据应用需要,数据交换可采用不同的通信接口,如模拟信号、PWM信号、CAN总线或I2C串行接口。某些BMS还有远程通信功能,将电源系统的数据传输到远程终端。
⑩ 电动汽车的近距离跟车控制系统有哪些优点
我认为主要有以下几种优点:
优点一:可以使电动汽车更安全的近距离跟车。