电动汽车电源系统初步认识
A. 新能源汽车上的电源系统的组成和供电关系
汽车电源系统主要由蓄电池、发电机、和电压调节器等组成。发电机负责对电池进行充电,使电池长期保持在足电状态。电池和发电机负责对全车的电器进行供电。 1、蓄电池:是汽车必不可少的一部分,可分为传统的铅酸蓄电池和免维护型蓄电池。由于蓄电池采用了铅钙合金做栅架,所以充电时产生的水分解量少,水分蒸发量也低,加上外壳采用密封结构,释放出来的硫酸气体也很少,所以它与传统蓄电池相比,具有不需添加任何液体,对接线桩头,电量储存时间长等优点。 2、汽车发电机:是汽车的主要电源,其功用是在发动机正常运转时(怠速以上),向所有用电设备(起动机除外)供电,同时向蓄电池充电。在普通交流发电机三相定子绕组基础上,增加绕组匝。汽车电源系统是由交流发电机、电压调节器、蓄电池等组成,结构见图1一1。电源系统的作用是供给全车用电设备的电力需要,其中蓄电池主要用于发动机起动时短时间内向起动机及点火系统供电:发动机正常工作时则由发电机向全车用电设备供电,同时剩余的电力向蓄电池充电,保证蓄电池拥有足够的电力;电压调节器在发电机上保证其输出的电压稳定在一定范围内,防止因电压起伏过大而烧毁用电设备。 汽车电源异常现象可分为启动脉冲、爬坡特性、叠加交流电压、过电压现象、电压中断、抛负载等。 启动脉冲:当发动引擎时,首先通过蓄电池供电(Us),由于起动机的短大电流和发动机机件阻力较大(建立扭矩的过程),加之蓄电池因低温化学反应活性下降。
B. 纯电动汽车电源系统主要由哪几部分组成
你好,纯电动汽车电源系统主要由蓄电池电源、能源管理系统和充电控制器三部分组成。
C. 纯电动汽车基本电力系统由哪些组成
电动汽车供电系统的组成与原理:组成
纯电动汽车电力驱动系统主要由电子控制器、驱动电动机、电动机逆变器、各种传感器(加速踏板位置传感器、制动踏板开关、转向盘转角传感器等)、机械传动装置(变速器和差速器)和车轮等组成。
电动汽车供电系统的原理:
能够将动力电池输出的电能转换为车轮上的机械能,驱动电动汽车行驶,并能够在汽车减速制动时,将车轮的动能转化为电能充入动力电池,是电动汽车的关键组成部分。它以驾驶人的操作(主要是以加速踏板位置的操作)为输入,经过驱动系统电子控制器的变换后,输出转矩给定值提供给电动机逆变器,电动机逆变器控制驱动电动机的输出转矩,从而使电动汽车以驾驶人预期的状态行驶。当电子控制器同时收到制动和加速信号,则以制动信号优先。其中,最关键的是电动机逆变器,电动机逆变器的主要功能是调节动力电动机和动力电池之间的电流频率和幅值,使其达到匹配,将动力电池的直流电逆变成交流电提供给驱动电动机,将电能转换成机械能,电动机输出的转矩经传动系统驱动车轮,使电动汽车行驶。
对于电动汽车不仅仅对环境有相当好的保护,更重要的就是在买电动汽车的时候还可以得到一大部分的优惠政策。
D. 简述电动汽车低压电源系统的作用
电动汽车的高压电气系统主要由动力电池/燃料电池、驱动电动机和功率转换器等大功率、高电 压电气设备组成。整车高压电气系统原理如图7. 19所示。高压电源从电的正极D+出发,首先通过位于驾驶员控制台的高压开关DK1,该开关受低压控制,作为整车高压电源的总开关以及充电开关。经线路2可以进行充电操。
电动汽车中低压系统介绍:简介
,经线路3与主电动机控制器(通过驱动电动机驱动车辆行走)、直流电源变换器(给低压24V电源充电)、转向系统控制器(控制转向助力机构)、制动系统控制器(控制和驱动气泵打气提供制动能量)及冷暖一体化空调相连,最后经过分流器FL流回负极,分流器FL的作用是检测高压线路中的电流值。此外,在电池内部之间装有500A的熔断器F,防止高压回路中电流过大。
E. 纯电动汽车有哪些控制系统
纯电动汽车系统:电力驱动系统
电力驱动系统包括电子控制器、功率转换器、电动机、机械传动装置和车轮,其功用是将存储在蓄电池中的电能高效地转化为车轮的动能,并能够在汽车减速制动时,将车轮的动能转化为电能充入蓄电池。电源系统包括电源、能量管理系统和充电机,其功用主要是向电动机提供驱动电能、监测电源使用情况以及控制充电机向蓄电池充电。
纯电动汽车系统:辅助系统
辅助系统包括辅助动力源、动力转向系统、导航系统、空调器、照明及除霜装置、刮水器和收音机等等,借助这些辅助设备来提高汽车的操纵性和乘员的舒适性。
纯电动汽车系统:电池包系统
电池包系统,包括电池包和管理系统,即battery package 和 BMS ,是电动车的能量源,现在的电池芯主流是磷酸铁锂子电池,三元锂离子电池等。
好了,小编今天的介绍到这里就要和大家说再见了,不知道大家觉得小编今天对纯电动汽车的系统介绍,能否让你对它有了一定的认识与了解呢。
F. 纯电动汽车有哪几个系统组成
1、动力电池组
2、驱动电机组
3、电控单元组
4、再加上传统汽车系统
G. 电动汽车电源系统分为哪两种
电池负极与电源负极相联,充电电源电压必须高于电池的总电动势。充电方式有恒电流充电和恒电压充电两种。
H. 电动汽车充电系统都有哪几种
一是使用随车携带的便携充电器,电动汽车都会随车配备便携充电器,让车主通过家用电源即可进行充电,主要特点就是方便。但是其充电速度慢的就有些让人发狂,只能作为一种其他的方式,补电使用。
二是家用充电桩。在购买电动汽车时,一般都会随车赠送家用充电桩,并会安排技术人员上门安装调试,这种充电方式充电时间还算可以,会随着车辆品牌型号的不同而有所区别,但是前提是要有一个停车位,并且物业允许你在停车位上安装家用充电桩。
第三种方式是公共充电桩。这种充电方式的优点就是可以根据实际情况选择直流快充和交流慢充,而且也是唯一支持直流快充的地方,但是缺点也很明显,公共充电桩现阶段建设较少,不容易找到,找到后也不容易占到,而且充电费用较高。
第四种充电方式就是换电池。这也是电动汽车最后的绝招,经过专门培训的技术人员,通过全自动或者半自动的技术,可在2-10分钟内更换掉电池,实现电能的补给,从而达到媲美燃油车加油的速度,但是这种方式的缺点也很明显,只能在专业地点,由专业人员操作,且所更换的电池参差不齐,让人担忧。
总体来说,电动汽车的充电方式较为灵活多样,可以根据自己的实际情况,科学合理的选择充电方式,这样既能达到不影响电动汽车的正常使用,又能节省充电费用,经济实惠。
电动汽车充电连接有哪几种:充电设备
电动机的驱动电能来源于车载可充电蓄电池或其他能量储存装置。
大部分车辆直接采用电机驱动,有一部分车辆把电动机装在发动机舱内,也有一部分直接以车轮作为四台电动机的转子,其难点在于电力储存技术。
电动机的驱动电能,本身不排放污染大气的有害气体,即使按所耗电量换算为发电厂的排放,除硫和微粒外,其它污染物也显著减少。
电动汽车还可以充分利用晚间用电低谷时富余的电力充电,使发电设备日夜都能充分利用,大大提高其经济效益。正是这些优点,使电动汽车的研究和应用成为汽车工业的一个“热点”。
类似于手机充电的ICM 阶梯波六段式充电,具有较好的去硫化效果,可对电池首先激活,然后进行维护式快速充电,具有定时、充满报警、电脑快充、密码控制、自识别电压、多重保护、四路输出等功能,配套万能输出接口,可对所有的电动车快速充电。 商场、超市、医院、停车场、小区门口、路边小卖部等公共场所。
汽车充电网络建设模式,在充电设施推进过程中,亟待突破的难题就是充电服务网络布点问题。电力部门依托现有的停车场设施,因地制宜地建设微电网、分布式、综合化的可充、可换全功能充电站,可避免充电模式存在的两个短板:一是充电时间长,二是停车环境有限。
充电标准的发展和争议:
2011年10月,七家美国和德国的重要的汽车公司宣布他们的电动车将试用统一的充电插口标准,这七家公司分别是奥迪、宝马、戴姆勒、福特、通用、保时捷和大众。随后,美国汽车工程师学会(SAE)宣布,该学会已设计出一种可以适用于一级和二级充电标准的插头。三级直流快充可以在15分钟内将你的电动车电池充满电。而二级充电(在美国是110伏电压)情况下,根据车型不同,充电时间大概是4-6个小时。这七家公司达成一致的充电插口标准,还和 SAE 的J1722充电标准相兼容,与欧洲的IEC 62196二类插口也同样兼容。
这七家欧美汽车公司同时一致同意将采用家用电力线网络联盟的HomePlug GP界面技术作为共用的传输规程,这就使得充电将来可融入未来的智能电网。HomePlug电力线联盟由半导体公司、公共设施公司、市场推广公司以及其他类型的公司组成。成员包括各类的国际公司,如思科(Cisco)、法国电信、中国华为等。这些公司共同合作开发、生产以及推广可提升电力网络及连接的新技术和新应用。
Chademo标准直流快速充电站可在30分钟充电至80%。这种快速充电装置显然比普通的二级充电桩更受欢迎,但是其运行需要电网瞬时功率能达到50千瓦,从而引发了电网压力的担忧,所以Chademo标准直流快速充电不是普通家庭充电的解决方案。而SAE充电标准则通过HomePlug GP技术对家庭用电进行合理分配,确保家庭电器不受干扰 。无线输电技术是一种利用无线电技术传输电力能量的技术,各个国家都在开发这种无线充电装置。
电动汽车充电连接有哪几种:技术原理
电机及控制系统
纯电动汽车以电动机代替燃油机,由电机驱动而无需自动变速箱。相对于自动变速箱,电机结构简单、技术成熟、运行可靠。
传统的内燃机能把高效产生转矩时的转速限制在一个窄的范围内,这是为何传统内燃机汽车需要庞大而复杂的变速机构的原因;而电动机可以在相当宽广的速度范围内高效产生转矩,在纯电动车行驶过程中不需要换挡变速装置,操纵方便容易,噪音低。
与混合动力汽车相比,纯电动车使用单一电能源,电控系统大大减少了汽车内部机械传动系统,结构更简化,也降低了机械部件摩擦导致的能量损耗及噪音,节省了汽车内部空间、重量。
电机驱动控制系统是新能源汽车车辆行驶中的主要执行结构,驱动电机及其控制系统是新能源汽车的核心部件(电池、电机、电控)之一,其驱动特性决定了汽车行驶的主要性能指标,它是电动汽车的重要部件。电动汽车中的燃料电池汽车FCV、混合动力汽车HEV 和纯电动汽车EV 三大类都要用电动机来驱动车轮行驶,选择合适的电动机是提高各类电动汽车性价比的重要因素,因此研发或完善能同时满足车辆行驶过程中的各项性能要求,并具有坚固耐用、造价低、效能高等特点的电动机驱动方式显得极其重要。
纯电动车的动力电池
动力电池是电动汽车的关键技术,决定了它的续行里程和成本。
1)纯电动车所需的动力电池
用于电动车的动力电池应有的功能指标和经济指标包括:(1)安全性;(2)比能量;(3)比功率;(4)寿命;(5)循环价格;(6)能量转换效率。这些因素直接决定了电动车的合用性、经济性。
2)超级电容器
超级电容器的优势是质量比功率高、循环寿命长,弱点是质量比能量低、购置价格贵,但是循环寿命长达50万~100万次,故单次循环价格不高,与铅酸电池、能量型锂离子电池并联可以组成性能优良的动力电源系统。
3)铅酸电池
铅酸电池生产技术成熟,安全性好,价格低廉,废电池易回收再生。近些年来,通过新技术,其比能量低、循环寿命短、充电时发生酸雾、生产中可能有铅污染环境等缺点在不断克服中,各项指标有很大提高,不仅可更好地用作电动自行车和电动摩托车的电源,而且在电动汽车上也能发挥很好的作用。
4)以磷酸铁锂为正极的锂离子电池负极为碳、正极为磷酸铁锂的锂电池综合性能好:安全性较高,不用昂贵的原料,不含有害元素,循环寿命长达2000次,并已克服了电导率低的缺点。能量型电池的质量比能量可达120Wh/kg,与超级电容器并联使用,可以组成性能全面的动力电源。功率型的质量比能量也有70~80Wh/kg,可以单独使用而不必并联超级电容器。
5)以钛酸锂为负极的锂离子电池
钛酸锂在充电-放电中体积变化极小,保证了电机机构稳定和电池的长寿命;钛酸锂电极点位较高(相对于Li+/Li电极为1.5V),在电池充电时可以不生成锂晶枝,保证了电池的高安全性。但也因钛酸锂电极电位较高,即使与电极电位较高的锰酸锂正极配对,电池的电压也仅约2.2V,所以电池的比能量只有约50~60Wh/kg。即使如此,这种电池高安全性,长寿命的突出优点,也是其他电池无可比拟的。
I. 新能源电动汽车的基础知识有哪些
一、节能与新能源汽车
节能型汽车:是指以内燃机为主要动力,综合工况燃料消耗量优于下一阶段目标值的汽车,即常说的非插电式混合动力;
新能源汽车:新能源汽车是指采用新型动力系统,完全或主要依靠新型能源驱动的汽车,主要包括纯电动汽车、插电式混合动力汽车和燃料电池汽车。
微混:发动机自动启停(一级节油,等红绿灯时发动机停转),不属于真正意义的混合动力;
轻混:能够回收减速和制动能量(二级节油,减速能量回馈,电动机不参与驱动);
中混:电动机辅助发动机运行,减少发动机输出波动;
强混:发动机辅助电动机运行,低速时可纯电动工作;
插电式混合动力(PHEV):能够外接充;
纯电动汽车(EV)——以纯电力驱动;
燃料电池汽车(FCV)——以燃料电池驱动。二、混合动力技术
1.简单来说,节能型汽车就是不可外接充电的内燃机/电动机混合动力汽车(HEV)。可外接充电的为PHEV(Plug-in hybrid electric vehicle,可外接充电式混合动力);
2.中混、强混和PHEV,按照电动机和发动机的功率配合方式,可以分为并联、串联和混连三种。
3.增程式(REEV)是采用串联结构的PHEV。4.根据混合动力用电机的不同,主要分为BSG和ISG两种技术。SG即Starter/Generator,启动/发电一体化电机。
5.BSG(Belt-driven Starter/Generator),皮带传动启动/发电一体化电机;在发动机前端用皮带传递机构将电机与发动机相连接,该机构比较简单,仅能起到发动和制动能量回收的作用,节油率也有限,一般12V的BSG节油率在5%-10%
6.ISG(Intergrated Starter/Generator)集成启动/发电一体化电机;直接集成在发动机主轴上,就是这一种瞬态功率较大的电机,在起步阶段能短时替代发动机驱动汽车,并起到启动发动机的作用;正常行使时由发动机驱动车辆,该电机断开或者起到发电机的作用;刹车时,该电机还可以再生发电,回收制动能量。7.混合动力架构
根据电机相对于传统动力系统的位置,可以把单电机混动方案分为五大类,分别以P0,P1,P2,P3,P4命名。这里的P就是是position(位置)的意思。
P0:皮带驱动发动机,即BSG技术;一般用于轻混;
P1:电机安装在发动机曲轴上,在离合器之前,ISG电机取代飞轮;在不同程度的制动过程中,ISG电机都可以实现发动机制动能量的回收和储存(下同);一般用于中混;
P2:电机置于变速箱的输入端,在离合器之后(发动机与变速箱之间),在P1的基础上可以单独(纯电)驱动车轮;
P3:电机置于变速箱的输出端,与发动机分享同一根轴,同源输出,在P2基础上纯电驱动更为直接;P2和P3一般用于强混;
P4:把电动机放在了驱动桥,直接驱动车轮;其最大的特点是电机与发动机不驱动同一轴,这意味着车辆可以实现四驱,但电机和发动机的完全脱离,就失去了P2、P3结构能够实现的一边行驶一边充电的功能,因此P4一般与其他混动方案系统结合使用于PHEV系统。