电动汽车蒙特卡洛模拟
Ⅰ 蒙特卡洛模拟法
蒙特卡洛模拟技术,是用随机抽样的方法抽取一组满足输入变量的概率分布特征的数值,输入这组变量计算项目评价指标,通过多次抽样计算可获得评价指标的概率分布及累计概率分布、期望值、方差、标准差,计算项目可行或不可行的概率,从而估计项目投资所承担的风险。
蒙特卡洛模拟的步骤如下:
第一步,通过敏感性分析,确定风险变量。
第二步,构造风险变量的概率分布模型。
第三步,为各输入风险变量抽取随机数。
第四步,将抽得的随机数转化为各输入变量的抽样值。
第五步,将抽样值组成一组项目评价基础数据。
第六步,根据基础数据计算出评价指标值。
第七步,整理模拟结果所得评价指标的期望值、方差、标准差和它的概率分布及累计概率,绘制累计概率图,计算项目可行或不可行的概率。
蒙特卡洛模拟程序如图7-26所示。
图7-26 蒙特卡洛模拟程序图
【实训Ⅷ】某项目建设投资为1亿元,流动资金1000 万元,项目两年建成,第三年投产,当年达产。不含增值税年销售收入为5000万元,经营成本2000万元,附加税及营业外支出每年为50万元,项目计算期12 a。项目要求达到的项目财务内部收益率为15%,求内部收益率低于15%的概率。
由于蒙特卡洛模拟的计算量非常大,必须借助计算机来进行。本案例通过手工计算,模拟20次,主要是演示模拟过程。
(1)确定风险变量。通过敏感性分析,得知建设投资、产品销售收入、经营成本为主要风险变量。流动资金需要量与经营成本线性相关,不作为独立的输入变量。
(2)构造概率分布模型。建设投资变化概率服从三角形分布,其悲观值为1.3亿元、最大可能值为1亿元、乐观值为9000万元,如图7-27所示。年销售收入服从期望值为5000万元、σ=300万元的正态分布。年经营成本服从期望值为2000万元、σ=100 万元的正态分布。
图7-27 投资三角形分布图
建设投资变化的三角形分布的累计概率,见表7-16及图7-27所示。
表7-16 投资额三角形分布累计概率表
(3)对投资、销售收入、经营成本分别抽取随机数,随机数可以由计算机产生,或从随机数表中任意确定起始数后,顺序抽取。本例从随机数表(表7-20)中抽取随机数。假定模拟次数定为k=20,从随机数表中任意从不同地方抽取三个20 个一组的随机数,见表7-17。
表7-17 输入变量随机抽样取值
(4)将抽得的随机数转化为各随机变量的抽样值。
这里以第1组模拟随机变量产生做出说明。
1)服从三角形分布的随机变量产生方法。
根据随机数在累计概率表(表7-16)或累计概率图(图7-28)中查取。投资的第1个随机数为48867万元,查找累计概率0.48 867所对应的投资额,从表7-16中查得投资额在10300与10600之间,通过线性插值可得
第1个投资抽样值=10300+300×(48867-39250)/(52000-39250)=10526万元
2)服从正态分布的随机变量产生方法。
从标准正态分布表(表7-21)中查找累计概率与随机数相等的数值。例如销售收入第1个随机数06242,查标准正态分布表得销售收入的随机离差在-1.53与-1.54之间,经线性插值得-1.5348。
图7-28 投资的累计概率分布图
第1个销售收入抽样值=5000-1.5348×300≈4540万元。
同样,经营成本第一个随机数66 903相应的随机变量离差为0.4328,第一个经营成本的抽样值=2000+100×0.4328=2043万元。
3)服从离散型分布的随机变量的抽样方法。
本例中没有离散型随机变量。另举例如下,据专家调查获得的某种产品售价的概率分布见表7-18。
表7-18 某种产品售价的概率分布
根据上表绘制累计概率如图7-29所示。
若抽取的随机数为43252,从累计概率图纵坐标上找到累计概率为0.43252,划一水平线与累计概率折线相交的交点的横坐标值125元,即是售价的抽样值。
(5)投资、销售收入、经营成本各20个抽样值组成20组项目评价基础数据。
(6)根据20组项目评价基础数据,计算出20 个计算项目评价指标值,即项目财务内部收益率。
(7)模拟结果达到预定次数后,整理模拟结果按内部收益率从小到大排列并计算累计概率,见表7-19所示。
从累计概率表可知内部收益率低于15%的概率为15%,内部收益率高于15%的概率为85%。
图7-29 售价累计概率曲线
表7-19 蒙特卡洛模拟法累积概率计算表
①每次模拟结果的概率=1/模拟次数。
Ⅱ 怎么用 Excel 做蒙特卡洛模拟
Excel 做蒙特卡洛模拟的具体操作步骤如下:
1、打开Excel表格,填写三个活动时间估算的乐观值,最可能值和悲观值。
Ⅲ 蒙特卡洛模拟法的应用范围是什么
蒙特卡洛模拟法的应用领域主要有:
1.直接应用蒙特卡洛模拟:应用大规模的随机数列来模拟复杂系统,得到某些参数或重要指标。
2.蒙特卡洛积分:利用随机数列计算积分,维数越高,积分效率越高。
3.MCMC:这是直接应用蒙特卡洛模拟方法的推广,该方法中随机数的产生是采用的马尔科夫链形式。
蒙特卡洛(Monte Carlo)模拟是一种通过设定随机过程,反复生成时间序列,计算参数估计量和统计量,进而研究其分布特征的方法。
具体的,当系统中各个单元的可靠性特征量已知,但系统的可靠性过于复杂,难以建立可靠性预计的精确数学模型或模型太复杂而不便应用时,可用随机模拟法近似计算出系统可靠性的预计值;随着模拟次数的增多,其预计精度也逐渐增高。
由于涉及到时间序列的反复生成,蒙特卡洛模拟法是以高容量和高速度的计算机为前提条件的,因此只是在近些年才得到广泛推广。 蒙特卡洛(Monte Carlo)模拟这个术语是二战时期美国物理学家Metropolis执行曼哈顿计划的过程中提出来的。
蒙特卡洛模拟方法的原理是当问题或对象本身具有概率特征时,可以用计算机模拟的方法产生抽样结果,根据抽样计算统计量或者参数的值;随着模拟次数的增多,可以通过对各次统计量或参数的估计值求平均的方法得到稳定结论。
Ⅳ 蒙特卡洛分析是什么
定量分析技术(例如蒙特卡罗模拟)可以通过潜在结果的概率分布帮助项目经理做出决策。
蒙特卡洛模拟技术在很大程度上依赖关键变量的随机性来解决问题。除了关键参数,我们还需要了解它们之间的关系以及足够的数据以进一步分析。
要想深入了解程序管理中的蒙特卡罗模拟让我们用大多数人熟悉的案例研究使用MS Excel进行一个实验。
案例研究
Shubham是XYZ公司的首席执行官。在发布计划之后,他的团队致力于为客户提供关键功能。Mohit是该公司的项目经理,根据他一直跟踪的风险和工作进度总结,已经确定了在达到目标交付日期方面的挑战
步骤1:确定随机数种子
在我们的场景中,因为我们知道最低的速度(Velocity)和最高速度(Velocity),我们可以得出:MIN (最后3次冲刺的实际速度)+RAND()*(MAX(最后3次冲刺的实际速度)-MIN (最后3次冲刺的实际速度))
我们可以选择任何函数(例如添加风险或范围参数),但为了简单起见,选择这个函数作为通常考虑调整大小时涉及的工作、复杂性和不确定性的速度。
步骤2:设置试验
行业标准表明,蒙特卡罗模拟至少有10000次运行。由于我们无论如何都在Excel中进行,因此我们可以进行15000次运行(或更多)。设置一个1至15000的试验列。
步骤3:随机运行
为第一次运行作为种子函数设置速度(Velocity)的另一列(如步骤1中所述)。我们现在有两个15000列,采用运行值填充第一列,第二列填充第一次运行的值。
Ⅳ 什么是蒙特卡洛模拟( Monte Carlo simulation)
蒙特卡洛模拟又称为随机抽样或统计试验方法,属于计算数学的一个分支,它是在上世纪四十年代中期为了适应当时原子能事业的发展而发展起来的。传统的经验方法由于不能逼近真实的物理过程,很难得到满意的结果,而蒙特卡罗方法由于能够真实地模拟实际物理过程,故解决问题与实际非常符合,可以得到很圆满的结果。
蒙特卡洛随机模拟法的原理是当问题或对象本身具有概率特征时,可以用计算机模拟的方法产生抽样结果,根据抽样计算统计量或者参数的值;随着模拟次数的增多,可以通过对各次统计量或参数的估计值求平均的方法得到稳定结论。
蒙特卡洛随机模拟法 - 实施步骤抽样计算统计量或者参数的值;随着模拟次数的增多,可以通过对各次统计量或参数的估计值求平均的方法得到稳定结论。
(5)电动汽车蒙特卡洛模拟扩展阅读
基本原理思想
当所要求解的问题是某种事件出现的概率,或者是某个随机变量的期望值时,它们可以通过某种“试验”的方法,得到这种事件出现的频率,或者这个随机变数的平均值,并用它们作为问题的解。这就是蒙特卡罗方法的基本思想。
蒙特卡罗方法通过抓住事物运动的几何数量和几何特征,利用数学方法来加以模拟,即进行一种数字模拟实验。它是以一个概率模型为基础,按照这个模型所描绘的过程,通过模拟实验的结果,作为问题的近似解。可以把蒙特卡罗解题归结为三个主要步骤:构造或描述概率过程;实现从已知概率分布抽样;建立各种估计量。
Ⅵ 蒙特卡罗仿真是什么,怎么仿真
蒙特卡洛模拟法求解步骤应用此方法求解工程技术问题可以分为两类:确定性问题和随机性问题。解题步骤如下:1.根据提出的问题构造一个简单、适用的概率模型或随机模型,使问题的解对应于该模型中随机变量的某些特征(如概率、均值和方差等),所构造的模型在主要特征参量方面要与实际问题或系统相一致2 .根据模型中各个随机变量的分布,在计算机上产生随机数,实现一次模拟过程所需的足够数量的随机数。通常先产生均匀分布的随机数,然后生成服从某一分布的随机数,方可进行随机模拟试验。3. 根据概率模型的特点和随机变量的分布特性,设计和选取合适的抽样方法,并对每个随机变量进行抽样(包括直接抽样、分层抽样、相关抽样、重要抽样等)。4.按照所建立的模型进行仿真试验、计算,求出问题的随机解。5. 统计分析模拟试验结果,给出问题的概率解以及解的精度估计。在可靠性分析和设计中,用蒙特卡洛模拟法可以确定复杂随机变量的概率分布和数字特征,可以通过随机模拟估算系统和零件的可靠度,也可以模拟随机过程、寻求系统最优参数等。
Ⅶ 蒙特卡洛算法的实际应用举例
比较简单的有随机抽样,通过坐标的变换产生球面,圆面,正方体面等等所需要的抽样。在某些计算机模拟过程中,可以随机产生噪声,比如说水中花粉随机行走之类的问题,可以用来随机产生外界水分子的作用力,用来模拟现实情况。当然也可以用这种方式来近似某些科学计算,最简单的例子就是近似计算积分。对于某些计算机无法完全枚举的优化问题,也可以用蒙特卡洛方法得到较好的解,常见的比如模拟退火,量子退火等优化方法,都用到了蒙特卡洛算法。
Ⅷ 蒙特卡洛模拟具体步骤是什么
蒙特卡洛模拟法求解步骤应用此方法求解工程技术问题可以分为两类:确定性问题和随机性问题。解题步骤如下:
1.根据提出的问题构造一个简单、适用的概率模型或随机模型,使问题的解对应于该模型中随机变量的某些特征(如概率、均值和方差等),所构造的模型在主要特征参量方面要与实际问题或系统相一致
2 .根据模型中各个随机变量的分布,在计算机上产生随机数,实现一次模拟过程所需的足够数量的随机数。通常先产生均匀分布的随机数,然后生成服从某一分布的随机数,方可进行随机模拟试验。
3. 根据概率模型的特点和随机变量的分布特性,设计和选取合适的抽样方法,并对每个随机变量进行抽样(包括直接抽样、分层抽样、相关抽样、重要抽样等)。
4.按照所建立的模型进行仿真试验、计算,求出问题的随机解。
5. 统计分析模拟试验结果,给出问题的概率解以及解的精度估计。
在可靠性分析和设计中,用蒙特卡洛模拟法可以确定复杂随机变量的概率分布和数字特征,可以通过随机模拟估算系统和零件的可靠度,也可以模拟随机过程、寻求系统最优参数等。