当前位置:首页 » 新型汽车 » 国内电动汽车模拟仿真技术现状

国内电动汽车模拟仿真技术现状

发布时间: 2022-08-23 03:39:40

电动汽车的技术瓶颈在哪里

虽然电动汽车本身没有排放污染,但是间接污染也是不容忽视的。如铅酸电池中的铅,从开采、冶炼到生产的排污,都会对环境造成污染。与铅酸电池比,当前广泛使用的磷酸铁锂电池的污染程度会相对比较低一点,只有电解质磷酸锂是有害的,但是对环境的影响也是不应忽视的。目前我国对汽车动力电池的研究还主要集中在提高其使用安全性和寿命这些方面,对回收的关注比较少,有必要增强对废旧汽车动力电池处理和回收的研究。

Ⅱ 我国制造电动汽车的技术已经达到了什么水平

汽车的保有量在全球范围之内已经占据了一半,而且根据相关的意见研究表明,中国将占全球电动汽车60%的销量,但是一个像中国这样的国家,我们在未来是不是能够主导电动汽车产业的发展,是不是能够主导当下这个行业的未来,这也是很多人都在关注的事情。

发展的过程中,中国政府正在竭力的让电动汽车的制造产业实现,更全面的覆盖,并且提供更多的供给侧的事实压力,对于未来也都会有着更多的帮助。面对当下的整个市场,各个方面的数字在不断的发生改变,而且也会给我们带来的是更多的可能性,大众汽车决定在2025年之前,将会投资1000亿欧元,并且和江淮汽车联合开发一些新能源的电动车,这就意味着未来会有更多的世界级别的汽车企业,他们将会在电动汽车领域进行布局.。

Ⅲ 竞速商业落地 自动驾驶赛程进入下半场

[汽车之家行业]?自动驾驶竞赛进入下半场,推进商业化应用成为各企业发力的重点。根据美国兰德公司的研究,自动驾驶算法想要达到人类驾驶员水平至少需要累计177亿公里的驾驶数据来完善算法。

如果配置一支100辆自动驾驶测试车的车队,每天24小时不停歇路测,平均时速25英里(40公里)每小时来计算,需要500多年的时间才能完成目标里程,期间所耗费的时间和成本无疑难以承受。

『腾讯TADSim部分场景展示』

另一方面,自动驾驶仿真测试评价体系缺乏规范。

在自动驾驶仿真测试方面,由于不同仿真软件系统架构及场景库构建方法的不同,导致很难建立统一规范的仿真测试评价体系。目前国内仿真评价体系的研究方向主要是从驾驶安全性、舒适性、交通协调性、标准匹配性等方面评价自动驾驶车辆仿真测试结果,对于仿真软件自身的评价缺乏统一的评价标准,如仿真软件场景真实度、场景覆盖度、仿真效率等。

自动驾驶汽车作为智能化产品,未来需要应用深度学习算法使汽车具备自我学习能力,如道路障碍物的复述重现能力、场景的泛化迁移能力,因此自我学习进化性也是自动驾驶汽车的评价指标,目前自动驾驶汽车的学习进化性还缺乏相应的评价规范。

总结:

自动驾驶技术演化有两条路线,分别是由L2级到L3级和L4级到L5级,前者是多数车企走的路线,后者往往是科技公司的选择,两者的主要代表分别是特斯拉和Waymo。今年以来,多家企业表示,已具备L3级自动驾驶车辆量产能力;科技企业也纷纷展开Robotaxi的商业化运营测试。可以看出,各股竞争势力都在试图抢先落地应用自动驾驶技术。谁能在竞赛中拔得头筹?成本和效率无疑是最关键因素,仿真测试的成熟应用或将成为关键。(文/汽车之家肖莹)

Ⅳ 未来电动汽车的发展前景大吗

" 摘要:本文对电动汽车技术发展趋势和前景作了概略介绍,并从技术—经济的角度出发,对纯电动汽车、混合动力汽车、燃料电池汽车以及动力电池、电机等关键零部件技术,作了综合评述,展望了电动汽车技术的未来发展前景。

1引言

上世纪70年代全球三次石油危机爆发后,各跨国汽车公司先后开始研发各种类型的电动汽车。我国经过“八五”、“九五”、“十五”三个五年计划,在研发电动汽车的专项上投入了大量的人力、物力和财力,并取得了一系列科研成果,但是,迄今为止,这些科研成果真正能转化为产品,并实现产业化生产的项目并不多。国外大汽车公司投入远比我国更多的资金和人力,已投入批量生产的电动汽车产品也寥寥无几。随着全球能源危机的不断加深,石油资源的日趋枯竭以及大气污染、全球气温上升的危害加剧,各国政府及汽车企业普遍认识到节能和减排是未来汽车技术发展的主攻方向,发展电动汽车将是解决这二个技术难点的最佳途径。

现代电动汽车一般可分为三类:纯电动汽车(PEV)、混合动力汽车(HEV)、燃料电池电动汽车(FCEV)。但是近几年在传统混合动力汽车的基础上,又派生出一种外接充电式(Plug-In)混合动力汽车,简称PHEV。本文将电动汽车技术研发的若干问题和趋势,作简要的介绍和评述。

2纯电动汽车(PEV)

纯电动汽车是指完全由动力蓄电池提供电力驱动的电动汽车,虽然它已有134年的悠久历史,但一直仅限于某些特定范围内应用,市场较小。主要原因是由于各种类别的蓄电池,普遍存在价格高、寿命短、外形尺寸和重量大、充电时间长等严重缺点。目前采用的铅酸电池、镍氢电池和锂离子电池,它们已达到的实际性能指标和市场平均价格,如表1所示。根据实际装车时的循环寿命和市场价格,可估算出电动汽车从各种动力电池上每取出1kWh电能所必须付出的费用。计算时,假设电池最高可充电荷电状态(SOC)为0.9,放电SOC为0.2,即实际可用的电池容量仅占总容量的70%;由电网供电价为0.5元/kWh,电池的平均充放电效率为0.75。

从表1的粗略计算中可知,虽然从电网取电仅需0.5元/kWh,但充入电池,再从电池取出,铅酸电池每提供1kWh电能,价格为3.05元左右,其中2.38元为电池折旧费,0.67元为电网供电费,而从镍氢电池中每提供1kWh电能,费用为9.6元,锂离子电池为10.2元,即后二种先进电池供电成本是铅酸电池的三倍多。

目前国内市场上用柴油机发电,价格大致为3元/kWh,若用汽油机发电,供电价格估计为4元/kWh,即从铅酸电机提供电能的价格大致和柴油机发电价格相等,仅仅从取得能量的成本来考虑,采用铅酸电池比汽油机驱动有一定价格优势,但是由于它太过笨重,充电时间又长,因此只被广泛用于车速小于50km/h的各种场地车、高尔夫球车、垃圾车、叉车以及电动自行车上。实践证实铅酸电池在这一低端产品市场上有较强的竞争力和实用性。

镍氢电池的主要优点是相对寿命较长,但是由于镍金属占其成本的60%,导致镍氢电池价格居高不下。锂离子电池技术发展很快,近10年来,其比能量由100Wh/kg增加到180Wh/kg,比功率可达2000W/kg,循环寿命达1000次以上,工作温度范围达-40~55℃。美国USABC在2002年制定的锂离子电池技术发展目标如表2所示。

近年由于磷酸铁锂离子电池的研发有重大突破,又大大提高了电池的安全性。目前已有许多发达国家将锂离子电池作为电动汽车用动力电池的主攻方向。我国拥有锂资源优势,锂电池产量到2004年已占全球市场的37.1%,预计到2015年以后,锂离子电池的性/价比有望达到可以和铅酸电池竞争的水平,而成为未来电动汽车的主要动力电池。

图1示出了国内外各种纯电动车辆数量/性能和价格/性能曲线,以电动自行车为代表的低性能车辆,由于其成本低廉,仅我国在2006年已达到年产2000万辆,美国通用汽车公司生产的冲击1号电动跑车,虽然已达到了很高的动力性,但是由于售价高昂,仅生产了区区50辆,由于没有市场而不得不停产。性能较低的场地车,在我国年产达7000~8000辆左右;天津清源电动车公司生产的微型电动车,最高车速仅50km/h,年产也可以达千辆以上,这可能是目前市场所能接受的纯电动车辆性能的上限。上述所有电动车辆均采用铅酸电池为动力。随着高性能锂离子电池的性/价比不断提升,未来5~10年内,市场上可能会出现最高车速≥100km/h,续驶里程≥250km的高性能纯电动汽车。

3混合动力电动汽车(HEV)

由于完全由动力蓄电池驱动的纯电动汽车,其性能/价格比长期以来都远远低于传统的内燃机汽车,难于与传统汽车相竞争,上个世纪90年代以来各大汽车公司都着手开发混合动力汽车。日本丰田公司在1997年率先向市场推出“先驱者”(Prius)混合动力汽车,并在日本、美国和欧洲各国市场上均获得较大成功,累计产销量已超过60万辆。随后日本本田、美国福特、通用和欧洲一些大公司,也纷纷向市场推出各种类型的混合动力汽车。

3.1研制全混合电动汽车的必要性

混合动力电动汽车是指具备两个以上动力源、而其中有一个可以释放电能的汽车。混合动力汽车按混合方式不同,可分为串联式、并联式和混联式三种;按混合度(电机功率与内燃机功率之比)的不同,又可分为微混合、轻度混合和全混合三种。其中外挂式皮带驱动起动/发电(BSG)式是微混合动力汽车的典型结构,其电机功率一般仅2~3kW,依赖发动机趵%GD!A3蟊鱿

Ⅳ 自动驾驶进入下半场 仿真测试技术成竞争新高地

《中国自动驾驶仿真蓝皮书》发布仪式

当L2+级的自动驾驶已经量产,由辅助驾驶向更高级别的无人驾驶进化,正在成为下一个阶段的奋斗目标。

但瓶颈的突破,除应用在车辆本身上的硬件及软件外,虚拟仿真平台这样的测试工具,同样必不可少。正如同济大学汽车学院汽车安全技术研究所所长朱西产所说,“没有虚拟仿真平台,根本无法实现智能网联汽车的开发”。

那么,现阶段,中国自动驾驶虚拟仿真技术发展状况究竟如何?10月12日,中国电动汽车百人会、腾讯自动驾驶、中汽数据有限公司联合发布了《2020中国自动驾驶仿真蓝皮书》,详解了这一技术目前的发展现状及挑战。

当自动驾驶的理论之争逐渐尘埃落定,在下半场的竞争之中,推进商业化落地成为企业们发力的重点。

众所周知,自动驾驶汽车在真正商业化应用前,需要经历大量的道路测试才能达到商用要求。根据美国兰德公司的研究,自动驾驶算法想要达到人类驾驶员水平至少需要累计177亿公里的驾驶数据来完善算法。也就是说,如果配置一支100辆自动驾驶测试车的车队,每天24小时不停歇路测,平均时速25英里(40公里)每小时来计算,需要500多年的时间才能完成目标里程。

而除时间成本之外,各国对于自动驾驶的法律法规容忍度、极端场景及危工况的测试安全性、各国道路交通环境及习惯不同等问题,都给自动驾驶系统研发测试带来诸多困难。

如何突破测试难题?用更低成本、高效率的虚拟仿真技术,替代自动驾驶算法的实际道路测试,将耗时耗力的实际道路测试,在虚拟仿真技术构建的数字孪生世界中完成,早已成为必要条件。

根据蓝皮书发布的数据,目前自动驾驶算法测试大约90%用仿真平台完成,9%在测试场完成,1%通过实际路测完成。而随着仿真技术水平的提高和应用的普及,在未来这一数据的理想状态是99.9%测试量通过仿真平台完成,封闭测试完成0.09%,最后0.01%进行实路测试,使自动驾驶研发更高效、经济。

据介绍,近两年来,中国自动驾驶仿真测试已初步形成完整的产业链体系,形成了科技公司、自动驾驶解决方案商、仿真软件企业为主的上游仿真软件提供商,以车企、自动驾驶测试机构为主的仿真软件下游应用商。尤其是以腾讯、网络、华为、阿里等科技巨头的入局,更极快地加速了自主仿真平台的研发节奏。

以腾讯为例。在今年6月底的“2020智慧出行新品发布会”上,腾讯曾正式发布了自己的TAD Sim2.0新一代自动驾驶仿真平台。而在不久前举办的世界新能源汽车大会上,这一平台又被评选为“2020年度世界新能源汽车创新技术奖”。据说,这也是我国自动驾驶仿真领域获得的首个国际性创新技术奖。

据介绍,腾讯的TAD Sim2.0通过完整的模型在环、软件在环、硬件在环、车辆在环的测试验证体系,覆盖了完整的汽车V字开发流程;场景库覆盖超过2000种场景类型,可以泛化生成万倍以上丰富场景,在云端高并发运行具备每日1000万公里以上的测试能力。

不过,尽管自主仿真平台的研发在近两年有了大幅进步,但在同济大学汽车学院汽车安全技术研究所所长朱西产教授看来,中国企业的自动驾驶技术想要赶超特斯拉与Waymo,在仿真平台这一工具的开发上,还必须加强合作,不能闭门造车。

据蓝皮书介绍,目前自动驾驶仿真技术的发展还存在场景库建设效率低、费用高,以及测试评价体系缺乏规范等问题。而此次《2020中国自动驾驶仿真蓝皮书》发布的目的,也正是希望推动交通出行产业链各方对虚拟仿真技术更清晰的了解,倡议行业开放共建,将仿真技术应用到自动驾驶量产落地和智慧交通的建设管理中去,让自动驾驶技术早日普惠民众,助力我国交通强国战略目标的实现。

Ⅵ 分析我国纯电动汽车的发现现状

①相比于世界著名汽车制造商对纯电动汽车的积极响应,我国自主品牌的民营企业走在了纯电动汽车创新的前列;
②目前我国纯电动汽车的研发主要集中在整车总布置、系统集成控制、电动机及其控制器、电池及其管理等方面;
③通过国内整车和电池相关厂商、高校和研究单位的共同努力,纯电动客车使用的锂离子蓄电池的技术日趋成熟,基本可以媲美国际先进水平;
④在纯电动乘用车方面,随着磷酸铁锂电池等技术的改进,纯电动汽车产业向着市场化、产业化的方向迅速发展。

Ⅶ 简述国内外asr技术发展现状

1 国外发展状况
早在1928年防抱死制动理论就被提出.BOSCH公司在1936年第一个获得了防抱死制动系统的专利权.1954年,FORD公司将ABS装在林肯轿车上.这一时期的各种ABS的轮速传感器和制动压力调节装置都是机械式,因此,获取的轮速信号不够精确,制动压力调节的适时性和精确性也难以保证.
随着电子技术的发展,ABS进进电子控制时代.20世纪60年代后期到70年代初期,凯尔塞·海伊斯公司研制生产的两轮制动的ABS、克莱斯勒公司与BENDIX公司合作研制的四轮制动的ABS、BOSCH和TEVES公司研制的ABS、WABCO公司与BENZ公司合作研制的装备在气压制动的载货汽车上的ABS,都是由模拟式电子控制装置对设置在制动管路中的电磁阀进行控制,直接对各制动轮以电子控制压力进行调节.由于模拟式电子控制装置反应速度慢、控制精度低、易受干扰,致使各种ABS均未达到预期的控制效果.
20世纪70年代后期,ABS采用数字式电子技术,反应速度、控制精度和可靠性都显着进步,ABS进人实用化阶段.BOSCH公司在1978年首先推出了采用数字式电子控制装置的ABS--BOSCH ABS2.自此,欧、美、日的很多公司相继研制了形式多样的ABS.自1985年起,BOSCH、TEVES、BENDIX、WABCO等公司开始对ABS的生产大力投资,以满足汽车对ABS需要量增加的要求.
目前,国际上ABS在汽车上的应用越来越广泛,已成为尽大多数汽车的标准装备,北美和西欧的各类客车和轻型载货汽车,ABS的装备率已达90%以上,轿车ABS的装备率在60%左右,运送危险品的载货汽车ABS的装备率为100%.
1971年BUICK公司研制了由电子控制装置自动中断发动机点火,以减小发动机输出转矩,防止驱动车轮发生滑转的驱动防抱死系统,成为ASR的雏形.1985年,VOLVO公司试制了电子牵引力控制系统ETC(ElectrONic Traction Control),通过调节燃油供给量来调节发动机输出转矩,以控制驱动轮滑转率,产生最佳驱动力.1986年,BOSCH推出了该公司的第一个牵引力控制系统TCS.
仅依靠调节发动机输出转矩不能解决汽车在对开路面上很好地起步加速的题目.为了解决这一题目,需要对附着不好的一侧驱动轮施加部分制动,以充分发挥附着条件较好的一侧的地面驱动力.随着ABS技术的不断发展和成熟,利用ABS压力调节系统可实现这一目标.采用制动干预控制的ASR系统通常都是同ABS集成在一起的,形成ABS/ASR系统.1986年12月,BOSCH公司第一次将ABS与ASR结合起来,率先推出了具有防抱死制动和驱动防滑转功能的防滑控制系统ABS/ASR 2U装置.同期,BENZ公司与WABCO公司也联合开发出了应用在载货汽车上的ABS/ASR系统.
此后,各大汽车公司纷纷开始应用ABS/ASR系统,使其成为顶级豪华车的标准配置.随着各至公司不断开发出结构更紧凑、本钱更低、可靠性更强、功能更全面的ABS/ASR系统,ABS/ASR系统也逐渐应用于中、低档汽车上.到1997年时,已经有23家汽车厂商的近50种车型使用了ABS/ASR系统.
2国内发展概况
国内研究开发ABS起步较晚,约始于20世纪80年代中期.但我国对ABS的系统开发十分重视,制定相应的法规力促ABS的发展.1993年4月1日开始实施的GB 13594-92《汽车防抱死制动系统性能要求和试验方法》,为ABS成为标准装备提供了试验方法和依据.1999年10月1日实施的GB 12676--1999《汽车制动系统结构、性能和试验方法》规定:2003年10月1日以后,大型客车和大型载货汽车必须安装符合GB 13594中规定的一类ABS.
目前,国内研究ABS有代表性的科.研机构有以下几个:吉林大学汽车动态模拟国家重点实验室、北京理工大学汽车动力性与排放测试国家专业实验室、清华大学汽车安全与节、能国家重点实验室、华南理工交通学院汽车系、济南程军电子科技公司等.这些单位在ABS的仿真、控制量、轮速信号抗干扰处理、轮速信号异点剔除、防抱电磁阀动作响应等方面的研究取得了很多成果.同时对防抱死制动时、的滑移率的计算、滑移率和附着系数之间的关系及ABS的控制算法也有很深的研究.
国内现在生产ABS的公司不少,但大多数公司是和国外着名ABS公司合作生产.完全自主生产开发ABS的有代表性的国内公司有:广州市科密汽车制动技术开发有限公司、重庆聚能汽车技术有限责任公司、东风科技汽车制动系统公司、西安博华机电股份有限公司等.已开发生产的产品有单通道、三通道、四通道、六通道的气压和液压式的,适用于摩托车、轿车、大中型客车一、重型载货汽车、挂车的ABS及相关零部件.这些ABS的制动性能指标达到了国外同类产品的水平,部分试验数据优于国外公司同类产品,在国内占有一定的市场.
估计2005年我国新生产的中、重型载货汽车,大、中型客车ABS的装车率为100%,而小、微型客车ABS的装车率为20%,轿车ABS装车率为50%.
国内对ASR的研究,大约开始于20世纪90年代.一些科研单位如清华大学、吉林产业大学、北京理工大学、同济大学、上海交通大学、济南重汽技术中心等对ASR技术的发展进行跟踪、研究,并取得了阶段性进展.目前,我国科研职员主要针对ASR控制系统的控制策略、控制算法、逻辑等关键环节进行研究.由于受电控发动机的限制,我国目前在ASR系统的控制理论方面大多侧重于采用以制动控制为主、发动机控制为辅的控制方法.总的来说,间隔产品化研究还有一定的差距.因此国内尚无自主研发的集ABS和ASR为一体的ABS/ASR防滑控制系统产品出现.
3 ABS/ASR的发展趋势
ABS/ASR控制技术的进步
目前,固然ABS/ASR已经广泛应用,但控制方法还是以逻辑门限值控制为主.该控制方法虽比较简单,但逻辑复杂,所有的门限值都需要大量的实验来确定,调试起来很困难.而且,采用逻辑门限值控制的ABS/ASR系统通用性比较差,需要针对不同的车型重新开发.随着各种现代控制理论不断发展和完善,采用优化控制理论,可实现伺服控制和高精度控制.将智能控制技术如模糊控制、神经网络控制技术应用到ABS/ASR系统中,可以进步系统的自适应性和可靠性.相对于目前的基于滑移率的控制算法,基于路面附着系数的控制算法轻易实现连续控制,能适应各种路面变化,控制滑移率在最佳滑移率四周,使ABS/ASR的控制效果得以改善.
通过先进的测试手段可进一步完善ABS/ASR功能.例如,ABS控制车轮制动防滑时,车速没有直接丈量,而是通过轮速的波动情况估取参考车速作为车速,然后计算滑移率用以控制,所以,ABS控制时的滑移率不能保证其正确性.随着传感器制造和集成技术的发展,添加车身速度传感器来丈量车身速度,可进步ABS/ASR的控制效果.
线制动系统BBW(Brake-by-Wire)是制动控制系统的发展方向之一.BBW将传统制动系统中的液压油或空气等传力介质完全由电制动取代,电能作为能量来源.制动时由电动机驱动制动钳块,整个系统内没有液、气压管路,可省略很多管路和传感器,因而结构简捷.BBW由电线传递能量,数据线传递信号,制动反应时间缩短,极大地进步了汽车的制动安全性,并为将来的智能汽车控制提供条件.此外,在电子控制系统中设计相应程序,操纵电控元件来控制制动力的大小及各轴制动力分配,可完全实现ABS及ASR等功能.BBW是一种全新的制动理念,但仍有一些题目需要解决:目前车辆的12 V/24 V电源系统无法提供如此大的能量,需采用高品质的42 V电源;由于不存在独立的主动备用制动系统,因此需要一个备用系统保证制动安全;车辆在运行过程中会有各种干扰信号,如何消除这些干扰信号造成的影响是急需解决的题目.
电子制动系统EBS(Electronically ControlledBraking System)是适应对汽车及挂车制动系统稳定性逐步进步的要求,在ABS/ASR基础上发展起来的一套综合电子控制系统.它除了包含ABS/ASR的基本功能外,还具有以下特点:①EBS优化了各车轮间、主车与挂车或半挂车间的制动力分配.通常,对于常规制动系统而言,牵引车和挂车之间的制动协调性不能总是处于理想的匹配状态,尤其在与牵引车相配的挂车经常更换的情况下.EBS会在任何状态下监控到主车与挂车的不兼容性,自动调整主车与挂车之间的制动力分配,满足主车和挂车制动协调性的要求,改善车辆的安全性.前后桥衬片磨损协调,总磨损量达到最小,所有衬片更换间隔一致,缩短了维修时间,降低运行本钱.同时,制动力的协调还可以增加制动舒适性.②EBS通过制动治理系统将辅助制动和行车制动同一治理.它确保在每一次制动时,实现无磨损制动(缓速器、发动机制动承担大部分的制动工作,因此可以使行车制动器的温度保持在一个最低的水平,制动衬片的磨损降低).③改善了ABS/ASR的功能,改善了制动响应时间和车辆的制动反应,缩短了制动间隔,改善制动稳定性.舒适的制动感应,几乎达到轿车的制动感受.④EBS具有完善的诊断和自检测功能,可提供关于制动系统的即时信息,任何故障都可以被系统监测到,并正确显示以提示维修.维修专家据此排除故障.
目前,EBS在载货汽车和客车上得到应用,是ABS/ASR在商用车领域的替换产品.ABS/ASR市场将逐渐减少,由于EBS将考虑用于轻型车.
减小体积与质量,简化结构
汽车上加装一些安全装置,质量随之增加,对燃油经济性不利.所以,在保证安全性的条件下,尽量减少质量.另外,不论是大型车还是小型车,其安装空间都是非常紧凑的,因此要求ABS/ASR装置的体积尽可能的小.减小ABS/ASR体积的主要途径是优化结构设计(如减小压力调节器尺寸)、增加集成度.目前,经过优化的ABS已将制动主缸、压力调节器和电控单元等集成为一体,从而大大减小了体积和本钱.
控制功能的扩展和集成
将各个功能不同的汽车电子控制系统集成,在实现各自基本功能的条件下,形成新的具有更强大功能的集成电控系统是汽车电子控制的必然趋势.把其它控制系统扩展进来,成为综合的汽车控制系统,是ABS/ASR系统的发展方向.目前,ABS/ASR向以下几个方向发展.
a.和电子制动力分配EBD(Electric Brake force Distribution)集成,形成ABS/ASR/EBD系统,可以明显改善并进步ABS的功效.EBD的功能就是在汽车制动的瞬间,高速计算出4个轮胎由于附着力不同而导致的摩擦力数值,然后调整制动装置,使其按照设定的程序在运动中高速调整,达到制动力与摩擦力(牵引力)的匹配,以保证车辆的平稳和安全.当紧急制动车轮抱死的情况下,EBD在ABS动作之前就已经平衡了每一个轮胎的有效地面附着力,可以防止甩尾和侧移,并缩短汽车制动间隔.
b.和电子稳定性程序ESP(Electronic Stability Program)系统集成,形成ABS/ASR/ ESP综合控制系统,可解除汽车制动、起步和转向时对驾驶员的高要求.ESP又称汽车动态控制VDC(Vehicle Dynamics Control).1995年,BOSCH推出基于ABS/ASR系统开发出的电子稳定性程序ESP.ESP在吸收ABS/ASR优点的基础上,添加转向传感器、侧滑传感器、横向加速度传感器和横摆角速度传感器等传感器,具有启动对制动力和汽车行驶方向进行修正、补偿的功能.ESP通过对各传感器传来的车辆行驶状态信息进行分析,使ABS/ASR自动地向一个或多个车轮施加制动力,将车辆保持在驾驶者所选定的车道内,来帮助车辆维持动态平衡.因此,可以使车辆在各种状况下保持最佳的稳定性,在转向过度或转向不足的情形下效果更加明显.
c.和汽车巡航自动控制ACC(Adaptive Cruise Control)系统集成,形成ABS/ASR/ACC综合控制系统,可解除汽车制动、起步和保持安全车距方面对驾驶员的高要求.ACC装置是近年来发展起来的一项汽车主动安全技术.装备ACC装置,可自动根据主目标车辆与主车车辆的相对间隔、相对速度和路面状况参数,判定主车的理想安全间隔,并实时自动调节主车车速,使之实际车距不小于理想安全间隔,因而,可在较大程度上避免碰撞事故发生,具有良好的安全行驶效果.由于ABS/ASR和ACC都要用到相同的轮速采集系统、制动力调节装置以及发动机调节装置,在汽车ABS/ASR集成装置的硬件基础上,添加一个车距传感器及相应的电磁阀即可实现ACC功能.因此ABS/ASR与ACC的集成,不仅可以降低本钱,而且可以进步汽车的整体安全行驶性能.
与其他控制系统的信息交换和共享,进步整体控制性能
随着汽车电子化程度不断进步,汽车上ECU数目越来越多.为了进步信号的利用率,要求大量的数据信息能在不同的ECU中共享,汽车综合控制系统中大量的控制信号也需要实时交换.传统的电器系统大多采用点对点的单一通讯方式,已远不能满足这种需求.为此,总线技术被引人到汽车电控系统中.今后,ABS/ASR控制系统的开发将基于总线技术进行,实现与其他控制系统的信息共享.例如,利用CAN总线和SAE J1939,可以很轻易实现机械式自动变速器AMT(Automatic Mechanical Transmission)和ABS/ASR之间的数据传输,实现资源共享.ABS采集的汽车轮速信号,可以通过变换得到变速器的输出轴转速为AMT所用,可减少传感器,降低控制系统的本钱.同时,减少了插接件,使AMT和ABS/ASR系统的可靠性和实时性进步.ABS工作时,可向AMT发出控制信息,要求AMT挂空档,进步ABS的工作性能,使车辆制动更平稳、更有效.ASR工作时可要求AMT向上换档减少力矩,使ASR的控制效果更好.ASR可使AMT避免在低附着路面起步和加速时出现反复换档现象.因此,信息交换和共享可以使两个控制系统的功能比它们单独控制的功能更丰富和有效,使每个控制器的功能都更加完善,便于进行更复杂的控制,为整车控制奠定基础.

Ⅷ 《智能汽车创新发展战略》解读,自动驾驶模拟仿真技术加速发展

受疫情影响,我国汽车工业面临严峻挑战。2020年1月,国内乘用车产销量分别为144.4万辆和161.4万辆,环比分别下降33.9%和27.1%,同比分别下降27.6%和20.2%,而在隔离期的2月产销量预计将进一步下滑。但危机往往也伴随着机遇同时到来,在这特殊时期,智能网联汽车或将成为我国汽车工业发展的一大机遇。

政策利好自动驾驶迎来新机遇

近日,发改委、工信部等11个国家部委联合出台了《智能汽车创新发展战略》(以下简称《战略》),将智能汽车的研发作为战略方向。《战略》指出,在2025年,中国标准智能汽车的技术创新、产业生态、基础设施、法规标准、产品监管和网络安全体系基本建成;2035年-2050年,中国标准智能汽车体系全面建成、更加完善。

在自动驾驶领域,《战略》提出了主要任务,包括复杂环境感知、智能决策控制、人机交互等在内的关键基础技术,建立健全智能汽车测试评价体系重点研发虚拟仿真、软硬件结合仿真、实车路测等测评技术,开展特定区域智能汽车测试运行及示范应用等。

行业专家解读,国家将智能汽车列入顶层发展规划,出行产业和信息产业融合发展,以科技创新为经济发展带来新机遇。

产业融合智能网联测试区创新发展

目前我国有16家国家级智能网联汽车测试区(自助驾驶测试场),主要通过对5G、V2X车路协同、模拟仿真、车联网等新技术的部署和应用,为智能驾驶乘用车、自动驾驶、网联通信供应商等提供系统测试服务,推动汽车、信息通信、道路设施等内容的综合标准体系的建立,促进多领域协同创新。

在工信部及各地政府部门的指导和推动下,各地测试区在发展建设的同时,也与国内外高校、企业等进行合作,打造基于自身产业需求的智能网联汽车测试场景,为绿色用车、智慧路网、智能驾驶、便捷停车、交通状态智慧管理等提供了应用示范,推动智能网联技术发展、应用落地和相关法规的制定。

其中,由湘江创新运营的国家智能网联汽车(长沙)测试区,模拟场景类型最多、综合性能领先、测试服务配套最优、5G覆盖范围最广,不断拓展产业生态。目前,国家智能网联汽车(长沙)测试区涵盖228个智能网联汽车测试场景,其中,3.6公里双向高速测试环境及无人机测试跑道为国内独有,封闭测试区及智慧公交示范线已实现5G全覆盖。

复杂交通场景的模拟

《智能汽车创新发展战略》的核心任务,重点在于构建协同开放的智能汽车技术创新体系、跨界融合的智能汽车产业生态体系、先进完备的智能汽车基础设施体系,具体包括突破复杂环境感知、重点支持研发虚拟仿真、软硬件结合仿真、实车道路测试等技术和验证工具,以及多层次测试评价系统、开展特定区域智能汽车测试运行及及示范应用、验证车辆环境感知准确率等工作内容。

在新政策的支持下,国家级智能汽车测试基地加速创新技术的应用,随着模拟仿真等关键技术的突破,或将带来相关测试和评价工作效率的大幅提升,加速自动驾驶技术的应用落地。

本文来源于汽车之家车家号作者,不代表汽车之家的观点立场。

Ⅸ 电动汽车在应用领域的现状

在“十五”863电动汽车重大专项和“十一五”863节能与新能源汽车重大项目连续支持下,中国电动汽车领域自主创新取得了重要进展,形成了以燃料电池、混合动力和纯电动汽车为“三纵”,多能源动力总成控制、驱动电机和动力蓄电池为“三横”的开发格局,自主开发的产品已经开始进入规模化示范运行。截至2010年12月,全国累计投入示范运行车辆7097辆,累计示范运行里程23890万公里。此外,国家出台《关于开展私人购买新能源汽车补贴试点的通知》,规定插电式混合动力车每辆最高可享受5万元补贴,而纯电动车最高可享受6万元补贴。
2010年,国家电网已在全国27个城市建立75座充电站和6209个充电桩。国家发改委、科技部出台的汽车产业调整和振兴规划指出,2011年,中国纯电动、充电式混合动力和普通型混合动力等新能源汽车数量将达到50万辆;到2020年中国新能源汽车的比例要占全部汽车的一半,约为6500万辆。《汽车与新能源汽车产业发展规划》(2011-2020年)提出到2020年,新能源汽车产业化和市场规模达到世界第一,新能源汽车保有量达到500万辆。以混合动力汽车为代表的节能汽车销量达到世界第一,年产销量达到1500万辆以上。
应用现状:
动力电源使用成本高,续驶里程短。电动汽车满载后电量消耗大大超过理论数据,一组新电池跑不到原定的80公里。其成本之高也是显而易见的:按照普通出租车新车平均油耗每公里0.6元、旧车油耗每公里0.7元、电动出租车每公里成本0.5元、司机一个大班平均跑500公里来算,司机一天油钱在300元-350元,电动出租车则是250元左右。但是虽然能节省50元-100元,但最少要换6次电瓶,尽管每次换电瓶不到5分钟,但由于充换电站少,浪费在换电瓶路上的成本也不少。

热点内容
皮卡丘的作文300字怎么写 发布:2025-05-16 03:01:30 浏览:798
商务车铺地板还是地毯 发布:2025-05-16 02:23:17 浏览:766
虎门房车营地户外婚礼 发布:2025-05-16 02:07:55 浏览:747
皮卡检车代检服务费 发布:2025-05-16 01:45:08 浏览:263
轻便电动三轮车价格及图片 发布:2025-05-16 01:32:16 浏览:219
踩豪车拍照 发布:2025-05-16 01:24:14 浏览:17
许昌至义乌大巴车价格是多少 发布:2025-05-16 01:24:10 浏览:554
瑞风商务车刹车分泉销 发布:2025-05-16 01:01:03 浏览:882
湛江房车露营地点推荐 发布:2025-05-16 00:27:52 浏览:162
五征房车作业 发布:2025-05-16 00:27:51 浏览:127