電動汽車動力系統集成方案有
㈠ 純電動汽車的動力電池維護有哪些項目
1.正確掌握充電時間. 電量表指示燈的紅燈和黃燈亮起時,說明該充電了;只內有紅燈亮時,應容立即停止運行,盡快充電,否則會導致電瓶過度放電嚴重縮短其壽命。如果充滿電後運行時間較短就再次充電,充電時間不宜過長,否則會形成過度充電、電瓶發熱,也會縮短電瓶壽命。一般情況下蓄電池平均充電時間在8-10小時左右,充電過程中電瓶溫度如果超過65℃,立即停止充電。2.保護好充電器. 充電時保持充電器的通風,否則不但影響充電器的壽命,還可能發生熱漂移而影響充電狀態。3.最好每天充電. 就像我們日常使用手機一樣,堅持每天充電能提高電池的活性,而經常等到沒電了再去充電則會降低電池得到壽命。4.當車輛閑置不用時應確保電池的電量,並定期對電池進行充電。5.減少大電流放電,電動車在起步、載人、上坡時,盡量避免猛踩加速,形成瞬間大電流放電。大電流放電容易導致產生硫酸鉛結晶,從而損害電池極板的物理性能從而降低電池的壽命。6.定期深放電電池定期進行一次深放電也有利於「活化」電池,此舉可以略微提升電池的容量。
㈡ 電動汽車動力總成不包括千克電池質量多少
應該說成能量密度或比能量,是描述動力電池的性能。與動力總成不是一個概念。
㈢ 電動汽車科技發展「十二五」專項規劃的科技創新的重點任務
「十二五」電動汽車科技發展重點任務是:緊緊圍繞電動汽車科技創新與產業發展的三大需求,繼續堅持「三縱三橫」的研發布局,突出「三橫」共性關鍵技術,著力推進關鍵零部件技術、整車集成技術和公共平台技術的攻關與完善、深化與升級,形成「三橫三縱三大平台」(三縱:混合動力汽車、純電動汽車、燃料電池汽車;三橫:電池、電機、電控;三大平台:標准檢測、能源供給、集成示範)戰略重點與任務布局(見表1)。
表1 重點技術方向任務布局(略) 1.電池
(1)以動力電池模塊為核心,實現我國以能量型鋰離子動力電池為重點的車用動力電池大規模產業化突破。
以車用能量型動力電池為主要發展方向,兼顧功率型動力電池和超級電容器的發展,全面提高動力電池輸入輸出特性、安全性、一致性、耐久性和性價比等綜合性能。強化動力電池系統集成與熱-電綜合管理技術,促進動力電池模塊化技術發展;實現車用動力電池模塊標准化、系列化、通用化,為支撐純電驅動電動汽車的商業化運營模式提供保障。
瞄準國際前沿技術,深入開展下一代新型車用動力電池自主創新研究,為電動汽車產業中長期發展進行技術儲備。重點研究新型鋰離子動力電池。研究新型鋰離子動力電池設計、性能預測、安全評價及安全性新技術。新體系動力電池方面,重點研究金屬空氣電池、多電子反應電池和自由基聚合物電池等,並通過實驗技術驗證,建立動力電池創新發展技術研發體系。
到2015年,為我國車用動力電池產業提升市場競爭能力提供科技支撐。通過新型鋰離子動力電池和新體系電池的探索,確立我國下一代車用動力電池的主導技術路線。
(2)突破燃料電池關鍵技術和系統集成,推進工程實用化,為新一代燃料電池汽車研發與產業化奠定核心技術基礎。
重點推進燃料電池的工程實用化,建立小批量生產線,進一步提升燃料電池性能,降低成本,強化電堆與系統的壽命考核,改進提高燃料電池系統控制策略與關鍵部件性能,提升燃料電池系統可靠性與耐久性,為燃料電池汽車示範運行提供可靠的車用燃料電池系統。
加強燃料電池基礎材料和系統集成科技創新,研發高穩定性、高耐久性、低成本的關鍵材料和部件。保證電堆在高電流密度下的均一性,提高功率密度,進一步增強系統的環境適應能力,為下一代燃料電池汽車研發奠定核心技術基礎。
2.電機
面向混合動力大規模產業化需求,開發混合動力發動機/電機總成(發動機+ISG/BSG)和機電耦合傳動總成(電機+變速箱),形成系列化產品和市場競爭力,為混合動力汽車大規模產業化提供技術支撐。
面向純電驅動大規模商業化示範需求,開發純電動汽車驅動電機及其傳動系統系列,同步開發配套的發動機發電機組(APU)系列,為實現純電動汽車大規模商業示範提供技術支撐。
面向下一代純電驅動系統技術攻關,從新材料/新結構/自感測電機、IGBT晶元封裝和驅動系統混合集成、新型傳動結構等方面著手,開發高效率、高材料利用率、高密度和適應極限環境條件的電力電子、電機與傳動技術,探索下一代車用電機驅動及其傳動系統解決方案,滿足電動汽車可持續發展需求。
3.電控
重點開發混合動力專用發動機先進控制演算法(滿足國IV以上排放法規)、混合動力系統先進實時控制網路協議、多部件間的轉矩耦合和動態協調控制演算法,研製高性能的混合動力系統(整車)控制器,滿足混合動力汽車大規模產業化技術需求。
重點開發先進的純電驅動汽車分布式、高容錯和強實時控制系統,高效、智能和低噪音的電動化總成控制系統(電動空調、電動轉向、制動能量回饋控制系統),電動汽車的車載信息、智能充電及其遠程監控技術,滿足純電動汽車大規模示範需要。
重點開發基於新型電機集成驅動的一體化底盤動力學控制、高性能的下一代整車控制器及其專用晶元、電動汽車智能交通系統(ITS)與車網融合技術(V2X,包括V2G:汽車到電網的鏈接,V2H:汽車到家庭的鏈接,V2V:汽車到汽車的鏈接等網路通訊技術),為下一代純電驅動汽車開發提供技術支撐。 1.混合動力汽車
針對常規混合動力汽車大規模產業化需求,開展系列化混合動力系統總成開發,協調控制、能量管理等關鍵技術攻關和整車產品的產業化技術研發,將節能環保發動機開發與電動化技術有機結合,重點突破產品性價比,形成市場競爭優勢。突破混合動力汽車產業化關鍵技術,構建混合動力汽車零部件配套保障體系,開展批量化生產裝備與工藝、質量管理體系以及配套的維修檢測設備開發,建成混合動力汽車專用的裝配、檢測、檢驗生產線。
中度混合動力方面,突破混合動力汽車關鍵技術,深化發動機控制技術研究,解決動力源工作狀態切換和動態協調控制,以及能源優化管理,掌握整車故障診斷技術,進一步提高整車的可靠性、耐久性、性價比,開發出高性價比、具有市場競爭力、可大規模產業化的混合動力汽車系列產品。
深度混合動力方面,突破混合動力系統構型技術,能量管理協調控制技術,開發深度混合動力新構型。開發出高性價比、可大規模批量生產的深度混合動力轎車和商用車產品。
表2 混合動力汽車產業化研發主要技術指標(略)
2.純電動汽車(含插電式/增程式電動汽車)
以小型純電動汽車關鍵技術研發作為純電動汽車產業化突破口,開發純電動小型轎車系列產品(包括增程式),並實現大規模商業化示範;開發公共服務領域純電動商用車並大規模商業示範推廣;加強插電式混合動力汽車研發力度,開發系列化插電式混合動力轎車和商用車系列產品。
小型純電動汽車方面,針對大規模商業化示範需求,開發系列化特色純電驅動車型及其能源供給系統,並探索新型商業化模式。實現小型純電動汽車(含增程式)關鍵技術突破,重點掌握電氣系統集成、動力系統匹配和整車熱-電綜合管理等技術。開發出舒適、安全、性價比高的小型純電動轎車系列產品。
純電動商用車方面,重點研究整車NVH、輕量化、熱管理、故障診斷、容錯控制與電磁兼容及電安全技術。
插電式混合動力汽車方面,掌握插電式混合動力構型及專用發動機系統研發技術;突破高效機電耦合技術、輕量化、熱管理、故障診斷、容錯控制與電磁兼容技術、電安全技術;開發出高性價比、可滿足大規模商業化示範需求的插電式混合動力轎車和商用車系列產品。
表3 純電驅動大規模商業化示範的主要技術指標(略)
3.以燃料電池汽車為代表的下一代純電驅動汽車
集成下一代高性能電機與電池系統,突破下一代高性能新型純電動轎車動力系統技術平台關鍵技術,到2015 年左右,完成下一代高性能、純電驅動動力系統技術平台,完成純電驅動轎車和下一代高性能大型純電動客車整車產品開發,技術水平處於國際先進水平。
面向高端前沿技術突破需求,基於高功率密度、長壽命、高可靠性的燃料電池發動機技術,突破新型氫-電-結構耦合安全性等關鍵技術,攻克適應氫能源供給的新型全電氣化底盤驅動系統平台技術,研製出達到國際先進水平的燃料電池轎車和客車,並進行示範考核;掌握車載供氫系統技術,實現關鍵部件的自主開發,掌握下一代燃料電池汽車動力系統平台技術,研製下一代燃料電池轎車和客車產品,並進行運行考核。
表4 下一代純電驅動技術突破的主要技術指標(略) 1.標准、檢測與數據平台
實現以純電驅動汽車及其配套充/換電技術標准為代表的電動汽車標准突破,在技術規范基礎上研究提出100項以上國家級技術標准;攻克電動汽車、關鍵零部件、重要元器件、關鍵材料以及充電、加氫裝備與基礎設施系統測試評價等一系列測試技術,逐步建成8個整車測試基地、15個關鍵零部件測試基地;深入開展技術分析、技術對標,建立電動汽車自主創新核心技術資料庫和共享平台。
在技術標准領域,深入研究分析國內外電動汽車技術發展最新趨勢,制定我國電動汽車自主創新的技術標准法規體系戰略,形成我國電動汽車相關技術標准法規體系。研究制定和完善電動汽車充電介面、充電通訊協議、充電機技術標准、充電站設計規范,以及電池尺寸、電池更換用電池箱譜系化等技術標准;研究制定和完善小型純電動汽車的定義和技術條件標准,各類電動汽車(尤其是小型純電動汽車、插電式混合動力汽車、深度混合動力汽車)技術標准,以及關鍵零部件的規格、型號、系列型譜等重要標准,為大規模示範和產業化提供技術標准法規支持;著力開展電動汽車創新技術領域的標准法規和技術規范研究制定,開展我國電動汽車行駛工況標準的研究制定和完善,加強技術法規國際協調。
在測試評價領域,重點針對技術標准需求,開展電動汽車整車、關鍵零部件、重要元器件、關鍵材料以及充電裝備、充電站安全管理系統測試評價技術研究。
在電動汽車開發資料庫建設方面,構建服務全行業的電動汽車產品資料庫軟硬體平台,開發共享資料庫,建立電動汽車整車及零部件產品開發、測試評價、產品檢驗認證和示範運行的資料庫,為行業提供產品開發所需的基礎技術數據支持。
2.能源供給基礎設施平台
開展電動汽車基礎設施建設規劃設計研究。研究制定充電/換電基礎設施設計、建設、運行規范,提高整體設計水平、安全保障能力。研究電動汽車基礎設施網路總體發展規劃和推進計劃,為形成全國統一標準的充/換電綜合網路體系提供技術支撐。
研究開發場站直流(包括快速)充電機、車載充電機及快速充換電站等各種充/換電技術及成套裝備;研製與下一代純電驅動平台和與智能電網配套的電動汽車能量雙向轉換技術與裝備,研究與可再生能源分布式發電結合的相關技術與產品。
面向下一代純電驅動平台技術突破需求,系統開展制氫、儲氫、加氫關鍵技術裝備研究與示範。對已建氫燃料加註站進行運行評價、技術升級和系統擴展;進行副產氫提純技術的規模化應用研究與示範;開展高效、低排放、低成本水電解制氫技術研究;進行小型高效低成本的化石燃料制氫系統研究;開展高壓氫氣加註技術、系統配置集成技術和控制技術的研究,開發先進壓縮機和加註槍等關鍵設備;開展太陽能光解等新型制氫技術研究;開展低成本可再生制儲-加註一體化系統集成加氫站示範。
3.應用開發與集成示範平台
結合「十城千輛」節能與新能源汽車示範推廣工程實施,在做好公共服務領域和私人用車領域電動汽車示範推廣試點的基礎上,穩步擴大電動汽車示範推廣規模。深入開展示範運行模式研究,建立完善的車輛和基礎設施示範運行監控網路與數據採集平台。
建設電動汽車及基礎設施示範運行數據採集和信息化管理平台,通過採集分析車輛行駛數據及基礎設施運行數據,解決電動汽車性能評估、安全預警及隱患識別等問題。
研究適用於各類車輛、設施及裝備的運行維護快速保障技術,建立故障診斷及快速維保操作規范及運行體系。構築示範城市電動汽車及充電基礎設施快速維保體系,提高系統效率、安全性和示範運行效果。
通過多種商業模式在電動汽車發展初期的示範推廣應用,從形成產品市場競爭力、配套系統技術和裝備的科學性、能源供給基礎設施建設與服務的方便性等方面,展開對電動汽車商業模式及配套裝備技術研究,探索出適合中國電動汽車可持續發展的商業化模式。
開展電動汽車國際科技合作研究;開展中外電動汽車技術評價與數據交流項目;建立國際電動汽車綜合示範區。
㈣ 電動汽車按照動力系統結構形式分類可分為幾種
按照動力系統結構形式分類可分一串聯式混合動力電動汽車,二並聯式混合動力電動汽車,三混聯式混合動力電動汽車。希望對您有用。
㈤ 增程式電動汽車動力系統部件有哪些
增程式電動車是在純電動汽車的基礎上開發的電動汽車。之所以稱之為增程式電動車是因為車輛追加了增程器的緣故,而為車輛追加增程器的目的是為了進一步提升純電動汽車的續航里程,使其能夠盡量避免頻繁地停車充電。
㈥ 電動汽車動力系統各部件的作用
電動汽車動力系統主要是兩部分,一部分是電機,一部分是電池。電機部分由電機、電機控制器(一般集合控制和驅動)、各種感測器、線束、冷卻系統等;電池部分包括電池組、BMS(電池管理系統)、溫度控制系統、充電系統等。能量回收通過電機的4相限運轉實現。大概就這些吧,沒寫全。
㈦ 車輛的動力系統集成設計流程包括哪些方面
動力系統集成設計流程從技術特徵上講主要包括四個方面:方案設計、詳細設計、關鍵部件設計校核和性能試驗驗證等。四個設計環節的交替進行與反復迭代
㈧ 燃料電池汽車的關鍵技術
電動汽車的關鍵能源動力技術包括電池技術、電機技術、控制器技術。電池技術、電機技術和控制器技術是電動汽車所特有的技術,這3項技術也是一直制約電動汽車大規模進入市場的關鍵因素。 電池是電動汽車的動力源泉,也是一直制約電動汽車發展的關鍵因素。電動汽車用電池的主要性能指標是比能量(E) 、能量密度(Ed)、比功率(P)、循環壽命(L)和成本(C)等。要使電動汽車能與燃油汽車相競爭,關鍵就是要開發出比能量高、比功率大、使用壽命長的高效電池。
電動汽車用電池經過了3代的發展,已經取得了突破性進展。
第1代是鉛酸電池,目前主要是閥控鉛酸電池(VRLA) ,由於其比能量較高、價格低和能高倍率放電, 因此是目前惟一能大批量生產的電動汽車用電池。
第2代是鹼性電池,主要有鎳鎘、鎳氫、鈉硫、鋰離子和鋰聚合物等多種電池,其比能量和比功率都比鉛酸電池高,因此大大提高了電動汽車的動力性能和續駛里程,但其價格卻比鉛酸電池高。
第3代是以燃料電池為主的電池,燃料電池直接將燃料的化學能轉變為電能,能量轉變效率高,比能量和比功率都高,並且可以控制反應過程,能量轉化過程可以連續進行,因此是理想的汽車用電池還處於研製階段,一些關鍵技術還有待突破。
廣泛應用於電動汽車的燃料電池是一種稱為質子交換膜的燃料電池(PEMFC) ,它以純氫為燃料,以空氣為氧化劑,不經歷熱機過程,不受熱力循環限制,因此能量的轉換效率高,是普通內燃機熱效率的2~3倍。同時,它還具有噪音低、無污染、壽命長、啟動迅速、比功率大和輸出功率可隨時調整等特性,使得PEMFC非常適合用作交通工具的動力源。 美國和加拿大是燃料電池研發和示範的主要區域,在美國能源部(DOE)、交通部(DOT)和環保局(EPA)等政府部門的支持下,燃料電池技術取得了很大的進步,通用汽車、福特汽車、豐田、戴姆勒賓士、日產、現代等整車企業均在美國加州參加燃料電池汽車的技術示範運行,並培育了美國的UTC(聯合技術公司)、加拿大的巴拉德(Ballad)等國際知名的燃料電池研發和製造企業美國通用汽車公司2007 年秋季啟動的Project Driveway 計劃,將100 輛雪佛蘭Equinox 燃料電池汽車投放到消費者手中,2009 年總行駛里程達到了160萬km。同年,通用汽車宣布開發全新的一代氫燃料電池系統,新系統與雪佛蘭Equinox 燃料電池車上的燃料電池系統相比,新一代氫燃料電池體積縮小了一半,質量減輕了100 kg,鉑金用量僅為原來的1/3。通用汽車新一代燃料電池汽車的鉑金用量已經下降到30 g,按照目前國際市場價格,鉑金為300~400 元/g,100 kW燃料電池的鉑金成本約為1 萬元人民幣,燃料電池的成本大幅度下降。預計到2017 年,100 kW燃料電池發動機的鉑金用量將下降到10~15 g,達到傳統汽油機三效催化器的鉑金用量水平。
美國在2006 年專門啟動了國家燃料電池公共汽車計劃(National Fuel Cell City Bus Program,NFCBP),進行了廣泛的車輛研發和示範工作,2011 年美國燃料電池混合動力公共汽車實際道路示範運行單車壽命超過1.1 萬h 。美國在燃料電池混合動力叉車方面也進行了大規模示範,截至2011 年,全美大約有3000 台燃料電池叉車,壽命達到了1.25 萬h 的水平。燃料電池叉車在室內空間使用,具有噪音低、零排放的優點。 歐洲的燃料電池客車示範計劃,完成了第6 框架計劃(Framework Program,2002—2006)和第7 框架計劃(2007—2012),目的是突破燃料電池和氫能發展的一些關鍵性技術難點,在CUTE (Clean Urban Transport for Europe, 歐洲清潔都市交通)及歐盟其他相關項目支持下,各個城市開展燃料電池公共汽車示範運行,今年新的計劃 CHIC( Clean Hydrogen in European Cities, 歐洲清潔都市交通)開始實施,包括阿姆斯特丹、巴塞羅那、漢堡、倫敦、盧森堡、 馬德里、波爾圖、斯德哥爾摩、斯圖加特、冰島以及澳大利亞珀斯, 即澳大利亞STEP 項目(Sustainable Transport Energy Program,可持續交通能源計劃)等,歐洲在燃料電池汽車的可靠性和成本控制等方面取得了長足的進步。
在德國,2012 年6 月,主要的汽車和能源公司與政府一起承諾,建立廣泛的全國氫燃料加註網路,支持發展激勵計劃,即到2015 年,全國建成50 個加氫站,為全國5000 輛燃料電池汽車提供加氫服務[7] 。戴姆勒賓士於2011 年開展燃料電池汽車的全球巡迴展示,驗證了燃料電池轎車性能已經達到了傳統轎車的性能,具備了產業化推廣的能力。戴姆勒集團參與「 Hy FLEET:CUTE(2003-2009)」項目。36 輛梅賽德斯-賓士Citaro 燃料電池客車已由20 個交通運營商進行運營使用,運營時間超過14 萬h、行駛里程超過220 萬km。但是第一代純燃料電池的客車,壽命只有2 000 h,經濟性較差。戴姆勒集團與2009 年開始推出第二代輪邊電機驅動的燃料電池客車,主要性能達到了國際先進水平,其經濟性大幅度改善,燃料電池耐久性達到1. 2 萬h。
德國西門子公司研發的燃料電池,已經成功地應用於德國的214 型潛艇上(氫氧型) [11] 。2007 年德國戴姆勒賓士公司,美國福特汽車公司和加拿大Ballard公司合作, 成立AFCC 公司(Automotive Fuel Cell Cooperation,車用燃料電池公司),以研發和推廣車用燃料電池。2013 年年初,寶馬公司決定與燃料電池技術排名第一的企業——豐田汽車公司合作,由豐田公司向寶馬公司提供燃料電池技術。 從全球范圍看,日本和韓國的燃料電池研發水平處於全球領先,尤其是豐田、日產和現代汽車公司,在燃料電池汽車的耐久性,壽命和成本方面逐步超越了美國和歐洲。豐田公司的2008 版FCHV-Adv 在實際測試中,實現了在-37 ℃順利啟動,一次加氫行駛里程達到了830km,單位里程耗氫量0.7 kg/(100 km),相當於汽油3L/(100 km),如圖3 所示 [12] 。2013 年11 月,豐田在「第43 屆東京車展2013」上,展出了計劃在2015 年投放市場的燃料電池概念車,作為技術核心的燃料電池組目前實現了當時公開的全球最高的3 kW/L 功率密度。該燃料電池組去掉了加濕模塊,不但降低了成本、車質量和體積,還減少了燃料電池的熱容量,有利於燃料電池在低溫條件下迅速冷啟動。如圖5所示為豐田公司的FCHV-Adv。
目前豐田汽車公司在擴大混合動力汽車的同時,重點針對燃料電池汽車的產業化進行准備,擬在2015年投放新一代燃料電池轎車,進行批量生產;2016 年生產(與日野合作)新一代燃料電池客車。和豐田汽車公司類似,日產汽車也投入巨資開展燃料電池電堆和轎車的研發,2011 年日產的燃料電池電堆,功率90 kW,質量僅43 kg,2012 年,日產汽車公司研發的電堆功率密度達到了2.5 kW/L,這在當時是國際最高水平[14] 。另外,本田公司新開發的FCX Clarity燃料電池汽車,能夠在- 30℃順利啟動,續駛里程達到620 km[15] ,2014 年,本田宣布的新一代燃料電池堆功率密度也達到3 kW/L。韓國現代從2002 開始研發燃料電池汽車,2005 年採用巴拉德的電堆組裝了32 輛運動型多功能車(sports utility vehicle,SUV),2006 年推出了自主研發的第一代電堆,組裝了30 台SUV,4 輛大客車,並進行了示範運行;2009—2012 年間,開發了第2 代電堆,裝配100 台SUV,開始在國內進行示範和測試,並對電堆性能進行改進;2012 年,推出了第3 代燃料電池SUV 和客車,開始全球示範;2013 年,韓國現代宣布將提前2年開展千輛級別的燃料電池SUV(現代ix35)生產,在全球率先進入燃料電池千輛級別的小規模生產階段。該SUV 採用了100 kW燃料電池,24 kW鋰離子電池,100 kW電機,70 MPa 的氫瓶可以儲存5.6 kg 氫氣, 新歐洲行駛循環(New European Drive Cycle,NEDC) 循環工況續駛里程588 km,最高車速160 km/h。 在中國國家「八六三」高技術項目、「十五規劃」的電動汽車重大科技專項與「十一五規劃」節能與新能源汽車重大項目的支持下,通過產學研聯合研發團隊的刻苦攻關,中國的燃料電池汽車技術研發取得重大進展,初步掌握了整車、動力系統與核心部件的核心技術,基本建立了具有自主知識產權的燃料電池轎車與燃料電池城市客車動力系統技術平台,也初步形成了燃料電池發動機、動力電池、DC/DC 變換器、驅動電機、供氫系統等關鍵零部件的配套研發體系,實現了百輛級動力系統與整車的生產能力。中國燃料電池汽車正處於商業化示範運行考核與應用的階段,已在北京奧運燃料電池汽車規模示範、上海世博燃料電池汽車規模示範、UNDP(United Nations Development Programme, 聯合國開發計劃)燃料電池城市客車示範以及「十城千輛」、廣州亞運會、
深圳大運會等示範應用中取得了良好的社會效益中國燃料電池轎車採用獨具特色的「電—電混合」動力系統平台技術方案,具有「動力系統平台整車適配、電—電混合能源動力控制、車載高壓儲氫系統、工業副產氫氣純化利用」的技術特徵。在「十五規劃」研發的基礎上,「十一五規劃」新一代燃料電池轎車動力系統結合整車平台的改變,採用扁平化的動力系統布置方式,燃料電池發動機氫氣子系統、空氣子系統與冷卻系統採用模塊化分散布置的模式,增加了動力系統與整車適配的柔性,明顯提升整車的人機工程性能。同時,優化集成DC/DC 變換器、DC/AC控制器以及電動空調和低壓變換器等功率元器件的動力系統控制單元,在提升模塊化的同時方便集中處理電磁兼容、系統冷卻以及電安全等問題,體現了電動
汽車動力系統集成設計的方向。與「十五規劃」燃料電池轎車動力系統相比,新一代動力系統的性能得到進一步優化與提高。主要表現在:燃料電池發動機功率從40 kW 提高到55 kW;動力蓄電池容量從48 kWh 減小到26 kWh ;電機功率從60 kW 提高到90 kW;電機控制器(DC/AC) 功率提高35%,體積比功率增加12.5%。同時,動力系統繼續保持燃料經濟性的技術優勢,在車輛整備質量增加近250 公斤的前提下整車動力性明顯提高,燃料經濟性則
仍然保持在1.2 kg/(100 km) 的原有水平。中國國家「八六三」高技術項目持續支持燃料電池汽車的技術研發工作,「十二五規劃」期間為保持中國電動汽車技術制高點,繼續保持了對燃料電池汽車的支持力度。從產業界來看,即使在「十五、十一五規劃」燃料電池汽車全球產業化熱潮期間,中國汽車工業界並沒有在燃料電池汽車方面有明顯投入,進入「十二五規劃」後,在燃料電池汽車產業化趨於理性化的大背景下,上汽集團制定了燃料電池汽車發展的五年規劃,以新源動力為燃料電池電堆供應商,開始投入大量資金研發燃料電池汽車,目前正進行第3 代燃料電池轎車FCV 的開發,在2011 年必比登比賽中,上汽開發的FCV 在燃料電池轎車組別中,名列第3。
同濟大學已開展多輪燃料電池轎車的研發工作,研製的燃料電池轎車已在奧運會、世博會進行大規模示範運行。在「十二五規劃」期間,同濟大學將為中國第一汽車集團公司、東風汽車公司、奇瑞汽車股份有限公司和中國長安汽車集團股份有限公司集成燃料電池轎車。在中國城市循環條件下,代表性燃料電池混合動力轎車的技術參數如表6 所示。
㈨ 車輛的動力系統集成設計技術特點有哪些
與傳統設計方法相比
㈩ 電動汽車
電動汽車能不能上路上牌的問題還沒經人大同意呢,你都忙代理了,是不是早了點?工商也不會給你發牌的。