電動汽車中的化學論文
㈠ 汽車系畢業論文範文
廂式汽車底盤改裝設計
【摘要】根據用戶需求,使廂式汽車具有各種功能,必須對其底盤進行改造。文章在分析底盤改裝設計內容和要
求的基礎上,對車架後懸的改裝,千斤頂的安裝,油箱的移位等提出改造設計方案,並提出了操作注意事項。
【關鍵詞】底盤;改裝設計;注意事項
0引言
廂式汽車是具有獨立的封閉結構車廂或與駕駛
室聯成一體的整體式封閉結構車廂,裝備有專用設
施,用於載運人員、貨物或承擔專門作業的專用汽車
廂式汽車主要由二類汽車底盤、車廂,連接裝置等組
成。多數情況下,生產廂式汽車的專用汽車改裝廠自
己不生產底盤,而是從生產汽車的主機廠購買二類汽
車底盤,回廠後根據需要對底盤進行改裝設計。
為了滿足用戶提出的要求,保證廂式車具有各種
各樣的功能,需要對底盤進行這樣那樣的改裝設計
總結筆者多年來的工作經驗,底盤改裝項目主要有車
架後懸的改變、加裝千斤頂、油箱移位、移動橫梁、移
動汽液管等。改裝時,總的原則是不影響、不降低原二
類底盤的性能,不允許隨意改變底盤軸距、輪距,保證
改裝後底盤的強度性能。改裝設計應使原來底盤的保
養部位、潤滑點、注油口、蓄電池和駕駛室翻轉操縱機
構易於接近,便於操作,不能損壞原底盤上為用戶正
確使用而設置的各種標識,不應使底盤的維修及保養
變得困難[1]。
1車架後懸的改造
1.1後懸改裝設計
車架後懸的改造有兩種情況,1)後懸縮短。2)後
懸加長。按照GB7258《機動車運行安全技術條件》[2]要
求,客車及封閉式車廂的車輛後懸不得超過軸距的
65%,最大不得超過3.5m。對於特殊改裝汽車,除了滿足上述條件外,為了保證車輛越野性,還要滿足離去角
要求,GJB219B《軍用通信車通用規范》[3]中規定,底盤
改裝後離去角不得小於26°。一般情況下,車架後端至
上裝車廂後端的距離不得超過400mm。
當縮短車架後懸時,要保留後橫梁或直接利用後
橫梁附近之前的橫梁,同時注意不能損壞板簧後吊耳
的連接。當加長車架後懸時,後橫梁至前一橫梁的距離
不應大於1200mm~1400mm,必要時在延長的空間內
縱向增加輔助橫梁。不論縮短還是加長車架後懸,改制
後的後橫梁在車架大梁前大約50mm左右(見圖1)。
後懸加長設計時,為了保證車架的強度,要採用與
原車架縱橫梁同型號、規格的材料,材料的性能、質量
應符合相應標準的規定,一般車架都選用16MnL專用
材料。
1.2後懸改裝操作注意事項
後懸改裝時要移動後橫梁或增加輔助橫梁,橫梁
與縱樑上下翼聯接最好採用鉚接方式。鉚接具有工藝
簡單、抗震、耐沖擊和牢固可靠等優點。如果採用螺栓
聯接,要注意螺栓應採用強度等級不低於8.8級的螺
栓,螺母應採用自鎖螺母,整體上要保證強度和防松
要求。
縱梁加長一般採用焊接方式,為了確保車架加長
不出現質量問題,一般企業都制定了《車輛改裝車架
接長專用工藝規程》,其中規定了焊接人員、設備、材
料、操作方法等,每批產品改裝前都要做焊縫強度試
驗,試驗合格後,才允許按照工藝要求進行施工。
試樣材料與被接長的縱梁一致,一般都是16MnL,
按照下圖製作兩件(見圖2)。
兩件對接立焊,採用J507或J502焊條,分兩次焊
完,底層採用!(3.2mm焊條,頂層採用(!4mm焊條,電
流I=110~170A。焊縫要求如下(圖3)。
㈡ 新能源汽車的論文
你自己按照個人情況改改!摘要:本文從新能源汽車的市場現狀開始,利用營銷中市場的概念和SWOT分析法,闡述和分析了海口新能源汽車的發展前景,闡明了海口新能源汽車還屬於產品的導入期,並建議「先公後私」引入新能源汽車等觀點。
關鍵詞:新能源汽 SWOT 產業化
在石油能源嚴重緊缺、節能呼聲日益高漲的背景下,新能源汽車研究項目被列入國家 「十五」期間的「863重大科技課題」,並規劃了以汽油車為起點,向氫動力車目標挺進的戰略。從2009年起,中國新能源汽車市場將進入產品導入期,由科技部牽頭的國家節能與新能源汽車大規模推廣應用工程將全面啟動。新能源汽車將在我國一批中心城市全面開花,並有望形成一定規模。 各家汽車企業都希望能夠占據先機,從日益膨脹的新能源汽車市場中分到更大的一塊蛋糕。繼北京奧運會之後,於2010年舉辦的上海世博會也將為新能源汽車加速發展提供了契機。而上海市作為下屆世博會的主辦城市,有關部門表示,為迎接世博會,明年上海將有1000輛左右的新能源汽車投入使用。那麼對於中國最南端的省會城市並榮獲「中國人居環境獎」的海口市,其新能源汽車的發展前景又是如何呢?
一、市場=購買規模+購買力+購買慾望
1. 海口的新能源汽車市場有沒購買規模
根據數據顯示:2008年底海口市常住人口180多萬人,2008年12月31日,海口市機動車保有量28.7萬輛,較2007年增長8.24%。目前新車入戶日均100輛,高峰期達380輛,年增長3萬輛,截至目前,海口市共有機動車駕駛人40萬人。隨著海口市民生活質量的不斷提高和改善,私家車成為機動車增長的新亮點。全市民用汽車擁有量15.28萬輛,比上年增長18.6%,其中私人汽車擁有量10.48萬輛,增長26.5%。民用轎車擁有量8.61萬輛,增長25.6%,其中私人轎車擁有量6.78萬輛。據了解,在5年的機動車增長過程中,私家車佔了46%,位居全國前列。但是從其他大中型城市的保有量和人口比例來分析,海口的汽車市場前景還是非常的廣闊。
2. 海口的新能源汽車市場有沒購買力
《2008年海口國民經濟社會發展統計公報》顯示:2008年全年海口市生產總值(GDP)實現443.18億元(不含農墾,下同),按可比價格計算,比上年增長10.4%,已連續11年保持兩位數增長,經濟增長率比全國平均水平高1.4個百分點。從三產業情況看,第一產業實現增加值31.4億元,增長8.6%;第二產業實現增加值113.28億元,增長1.7%,第三產業實現增加值298.5億元,增長14.4%。一、二、三產業結構為7.0:25.6:67.4。按常住人口計算,人均生產總值達3573美元(按平均匯率),比上年增長8.0%。2008年末,全市城鎮從業人員29.1萬人(不包括私營企業、鄉鎮企業從業人員及個體勞動者),比上年增長3.2%,其中,在崗職工人數28.9萬人,增長6.5%。全年實現新增就業人員31313人,其中下崗失業人員再就業12377人,職業技能培訓11798人,其中再就業培訓5730人;農村富餘勞動力轉移就業11290人,創業培訓1149人。按照眾泰2008EV公布基本型以11.98萬元的市場價格出售的新能源汽車來看,它創造了目前國內純電動乘用車領域的最低價,但這一價格與傳統汽車相比,仍高出了一大截。如果用鋰電池改造一個傳統動力的轎車,附加成本是15萬元-16萬元,而如果是公交車,就是50萬元-60萬元。所以從人均生產總值和就業情況來來看,海口居民購買電動車的購買力還比較弱。
3. 海口的消費者對於新能源汽車市場有沒購買慾望
日前,新華信針對消費者的新能源汽車購買意向調查顯示,僅有7.8%的被訪者表示肯定會購買新能源汽車,超過七成以上的被訪者態度不明朗,另有16.5%的被訪者表示肯定不會購買。是什麼原因導致消費者對新能源汽車的購買表現遲疑?此次調查顯示,「車價太高」成為阻礙消費者購買新能源汽車的主要原因。其次,對新能源車「技術不信任」、「擔心維修便利性」、「燃料添加不方便」等原因也是消費者不考慮購買新能源汽車的理由。新能源汽車普遍售價過高,而純電動以及充電式混合動力汽車都需要電源等基礎設施的支持,如果政府財力不能給予足夠的補貼,或者無法建成完善的充電設施,相對於技術成熟穩定的傳統動力車型而言,消費者對新能源汽車這一新生事物的認識還不足,所以從購買慾望來看,海口的大部分居民沒有夠買新能源汽車的意向。
市場=購買規模+購買力+購買慾望,從市場構成的三要素來看海口的新能源汽車市場有沒購買規模,從其他大中型城市的保有量和人口比例來分析,還是非常的廣闊,但是從人均生產總值和就業情況來來看,海口居民購買電動車的購買力還比較弱,由於消費者對新能源汽車「車價太高」 、「技術不信任」、「擔心維修便利性」、「燃料添加不方便」等原因,使其購買慾望偏低。
二、海口市新能源汽車的發展前景的SWOT分析
1. 海口市新能源汽車的發展前景的優勢(strength)分析
國家信息中心預測,我國乘用車市場的高速增長態勢將至少再持續15 年,需求年均增長率大致相當於GDP 增長率的1.5 倍左右。2009 年轎車將大量進入家庭(中等收入家庭具備購車能力)。從定性角度看,轎車市場至少還將有20 年的快速增長。如果國內GDP2020 年比2000年翻兩番的話,2020 年前後我國將超過美國,汽車需求量將達到2000 萬輛,成為世界第一大汽車市場。
自1988年,海南建省並成為全國最大的經濟特區,海口市成為海南省省會以來海口市便獲得了十佳城市、國家環境保護模範城市、全國衛生城市、中國優秀旅遊城市、國家園林城市、國家歷史文化名城、全國創建文明城市工作先進市、全國城市環境綜合整治優秀城市、「中國人居環境獎」 等城市美譽。海南一貫的發展思路是旅遊島、環保島、健康島,新能源汽車便是這個城市的另一種環保和健康。 從海口市的經濟發展前景和汽車市場發展規模來看,在城市的公交、計程車、公務、環衛和郵政等公共服務等領域,新能源汽車有很大的市場空間。
2. 海口市新能源汽車的發展前景的劣勢(weakness)分析
(1)交通擁擠、混亂。近5年來海口機動車和駕駛員數量持續增長,給道路交通管理帶來了空前的壓力。據了解,海口現有城市道路859條,總長度1797公里,機動車擁有量為25萬輛,且正以每日200輛的速度增長著,其中私家車佔有量高達26%,以當前海口的交通網路顯然是無法滿足機動車行駛需求的。其次,城市中心區域道路改造速度緩慢,對原有道路改造還未形成系統工程,特殊是多頸路,斷頭路長年以來未得到有效改造。嚴重製約著其他主幹道的通行及分流量能力。再次,還存在精態道路交通及建設滯後問題,如海口現有的停車場因不能容納下過多的車輛,導致司機在一些路段兩旁停車。這使得本來就不寬的道路變得更加狹窄。還有就是海口交通發展落後,市民出行方式單一,摩托車、私家車等出行成為市民首選,使道路資料利用率降低。如府城的中介路是海口摩托車與風采車泛濫最為嚴重的地方之一。在候車店旁,擠滿了摩托車與風采車。他們佔道搶客,阻礙了其他過往車輛的正常通行,輕易引起堵車。海口交通警力不足,路面管控點,盲區過多,人們的交通, 觀念淡薄,公交車的線路重疊嚴重,站點安排不合理。有些路段的塞車嚴重,特別是節假日或上下班高峰時,交通是混亂不堪。
(2)車位供小於求。資料顯示,目前,海口的汽車保有量已超過16萬輛,並以每年2萬多輛的速度遞增。據了解,目前海口市平均每天有60多輛新車上路,而在一天之間增加這么多車位顯然不太現實。在未來幾年內,不論是小區車位還是公共車庫都會更加趨於緊張。
交通混亂、堵塞、車位難求,不僅是海口汽車市場,也是海口新能源汽車市場發展的一個致命症結。
3. 海口市新能源汽車的發展前景的機會(opportunity)分析
(1)政府鼓勵。今年2月5日,科技部和財政部聯合出台《節能與新能源汽車示範推廣財政補助資金管理暫行辦法》,宣布為鼓勵節能汽車發展,中央財政將對購置節能與新能源汽車給予一次性定額補助,鼓勵全國13個試點城市率先在公交、計程車、公務、環衛和郵政等公共服務領域推廣使用節能與新能源汽車。《辦法》明確規定,中央財政對購置節能與新能源汽車將按同類傳統汽車的基礎價差,並適當考慮規模效應、技術進步等因素給予一次性定額補貼。其中,長度10米以上城市公交客車是此次補貼的重點,混合動力客車最高每輛補貼42萬元,純電動和燃料電池客車每輛補貼分別高達50萬元和60萬元。
(2)新能源汽車技術逐步成熟完善。在「十五」電動汽車重大專項和清潔汽車科技行動攻關計劃的基礎上,「十一五」期間,在「863」計劃中又啟動了「節能與新能源汽車」重大項目,繼續支持節能與新能源汽車關鍵技術研發和產業化。 這期間,我國科技計劃累計投入近20億元,分別組織實施了「電動汽車重大科技專項」和「節能與新能源汽車重大項目」,確立了「三縱三橫」的研發布局,即燃料電池汽車、混合動力汽車、純電動汽車三種整車技術為「三縱」,多能源動力總成系統、驅動電機、動力電池三種關鍵技術為「三橫」。目前,我國基本掌握了新能源汽車技術,建立了節能與新能源汽車的動力技術平台,形成了一個比較完整的關鍵零部件體系,開發出一批節能與新能源汽車的產品,實現了小批量的整車能力。在我國節能與新能源汽車的研發布局中,純電動車和燃料電池車、混合動力車「三駕馬車」並駕齊驅。 通過持續開展的技術攻關,我國的新能源汽車產品日益成熟。在混合動力汽車方面,我國在系統集成、可靠性、節油性能等方面進步顯著,依據不同混合度方案,實際路況運行節油10%至40%,混合動力整車產品開始小批量進入市場。 在純電動汽車方面,我國處於國際先進水平,使用大容量鋰離子動力蓄電池的純電動客車在奧運中心區的規模應用,代表了當代國際純電動大客車的先進水平。純電動轎車具有成本優勢,已開始小批量出口歐美,國內市場需求也不斷加大。在燃料電池汽車方面,我國的整車集成技術、動力平台的成熟性、整車的可靠性有了新的提高,無故障間隔里程與國外同步達到3000公里,燃料經濟性優於國外燃料電池汽車,並取得了「新一代整車控制器」、「兩擋變速器」、「氫電系統安全性碰撞」等一批原創性研究成果。
4. 海口市新能源汽車的發展前景的威脅(threat)分析
(1)技術問題。對於新能源汽車來說,電池技術是主要瓶頸。研製成本低、體積小、持續能力強,並且使用壽命長的電池是破解新能源汽車難題的關鍵。此外,如何保證由電機系統組成的動力總成與整車匹配,是亟待解決的技術問題。
(2)產業化問題。 我國能源汽車戰略應盡快形成上下一盤棋的局面。而當前各地爭相上馬新能源汽車聯盟和產業基地,或將導致更嚴重的地方保護主義,不利於新能源戰略的推廣。 另外,國內節能與新能源汽車生產企業並沒有足夠的技術實力迎接產業化的到來。在混合動力汽車關鍵零部件領域,國內企業的產品可靠性以及自動變速箱生產經驗等方面均與國外產品存在一定差距。
從海口市新能源汽車的發展前景的SWOT分析來看,海口市的新能源汽車的發展前景有著發展公共服務等領域的優勢,同時由於城市交通的混亂、堵塞、車位難求等劣勢,制約著海口新能源汽車市場的發展,但由於我國政府對於新能源汽車的政策鼓勵和支持,各民族自主企業的發奮圖強,攻破了新能源汽車的層層技術難關,海口新能源汽車市場又面臨了新的機遇。
三、發展前景建議
1. 引導消費者改變消費觀念
多年來的汽車消費習慣導致人們對汽車新事物——新能源汽車的認識存在諸多偏見,例如價格太貴、性能不穩定、使用不方便和維修太貴等等。無論是政府還是汽車廠家都應該從各個方面去正確引導消費者,讓他們對新能源汽車有一個正確而客觀的認識,讓汽車消費更加理性和科學。倡導汽車新消費=環保+誠信+車德的理念,使消費者在購買新能源汽車的時候感受到自己作出的社會貢獻。
2. 解決交通混亂、車位難求的現狀
海口目前總的交通狀況是交通網路發展緩慢與車輛眾多之間的矛盾,貫穿海口的交通。還有停車問題、佔道拉客問題等一系列的問題構成海口市交通的主要問題。建議相關職能部門必須制定海口交通短期改造計劃及長期建設規劃和相關政策解決車位難求的現狀。
3. 政府加大鼓勵和指導力度
新能源汽車除了混合動力之外,純電動車及其他代用燃料車應由國家統一標准。啟動的節能與新能源汽車示範推廣試點,在3至5年的補貼期內增強自主創新產品競爭力,以順利進入產業化階段,降低企業生產成本,使其售價滿足消費者的需求。同時建立與新能源汽車相關的產業結構,如充電站、新能源汽車檢測與維修中心,聯合生產廠家建立和完善售後服務體系。
4. 「先公後私」引如新能源汽車
海口新能源汽車還屬於產品的導入期,建議先從公交、計程車、公務、環衛和郵政等公共服務領域推廣使用節能與新能源汽車,逐步改變消費者,特別是私家車主的消費觀念,在發展新能源汽車的私家車市場。
㈢ 電動汽車的發展前景論文
摘 要 隨著環境污染的日趨嚴重和「低碳經濟」概念的不斷推廣,節能減排成為當今熱點問題。而如今汽車保有量逐年增加,在導致交通擁堵的同時也造成了嚴重的環境污染,能源危機問題也亟需解決。在此背景下,開發新能源,研製節能環保型汽車是汽車工業可持續發展的必然選擇。筆者就新能源汽車的發展現狀和發展趨勢,以及我國新能源汽車發展所遇到的問題作出闡釋與總結。
關鍵詞 新能源汽車 發展現狀 發展趨勢€E烀媼倌煙
中圖分類號:U473 文獻標識碼:A
1 引言
在我國,新能源汽車概念最早在20世紀60年代「十一五」初期的「863計劃」中提出。新能源汽車概念一提出,就引起了社會和學術界的廣泛討論,行業內各廠商也表現出較高積極性,不斷嘗試研發不同類型的新能源汽車。那麼,新能源汽車是如何定義的呢?目前,對於新能源汽車的定義各有側重,新能源汽車的概念和分類標准也沒有統一,本文將從普遍認同的概念和分類進行闡述。新能源汽車可以分為廣義和狹義新能源汽車。廣義上講,新能源汽車指除汽油和柴油發動機等內燃機之外所有其它能源汽車。包括氫能源汽車、燃氣汽車、燃料電池汽車和混合動力汽車等,廢氣排放量相對較低或者零排放。從狹義上講,新能源汽車指採用非常規車用燃料作為動力來源,綜合車輛的動力控制和驅動兩方面的技
㈣ 請教高手:淺析汽車新能源技術發展狀況論文怎樣寫
立幟汽車製造網 隨著世界能源危機和環保問題日益突出,汽車工業面臨著嚴峻的挑戰。一方面,石油資源短缺,汽車是油耗大戶,且目前內燃機的熱效率較低,燃料燃燒產生的熱能大約只有35%—40%用於實際汽車行駛,節節攀升的汽車保有量加劇了這一矛盾;另一方面,汽車的大量使用加劇了環境污染,城市大氣中CO的82%、NOx的48%、HC的58%和微粒的8%來自汽車尾氣,此外,汽車排放的大量CO2加劇了溫室效應,汽車雜訊是環境雜訊污染的主要內容之一。我國作為石油進口國和第二大石油消費大國,污染嚴重,世行認定的20個污染最嚴重的城市有16個在中國。國內汽車產品水平與國外差距很大,平均油耗高出10%—30%,排放約為15—20倍,汽車工業面臨的壓力更大。
上個世紀末以來世界各國和各大汽車公司以及國內各大科研機構和高等院校紛紛致力於開發清潔節能汽車,新能源汽車獲得了長足發展。汽油和柴油是傳統內燃機汽車的能源,利用除此以外的能源提供汽動力的汽車均可稱為新能源汽車。目前正在開發的新能源包括天然氣、液化石油氣、醇類、二甲醚、氫、合成燃料、生物氣、空氣以及電荷燃料電池等。
本文介紹新能源汽車技術的發展概況,並對其發展前景提出看法。
1 新能源汽車的種類及其特點
1.1 天然氣汽車和液化石油氣汽車
天然氣汽車又被稱為「藍色動力」汽車,主要以壓縮天然氣(CNG)、液化天然氣(LNG)、吸附天然氣(ANG)為燃料,常見的是壓縮天然氣汽車(CNGV)。液化石油氣汽車(LPGV)是以液化石油氣(LPG)為燃料。CNG和LPG是理想的點燃式發動機燃料,燃氣成分單一、純度高,與空氣混合均勻,燃燒完全,CO和微粒的排放量較低,燃燒溫度低因而NOx排放較少,稀燃特性優越,低溫起動及低溫運轉性能好。其缺點是儲運性能比液體燃料差、發動機的容積效率較低、著火延遲期較長。這兩類汽車多採用雙燃料系統,即一個汽油或柴油燃料系統和一個壓縮天然氣或液化石油氣系統,汽車可由其中任意一個系統驅動,並能容易地由一個系統過渡到另一個系統。康明斯與美國能源部正合作開發名為「先進往復式發動機系統(ARES)」的新一代天然氣發動機,根據開發目標,該發動機熱效率達50%(熱電聯產時達到80%以上),NOx排放量低於0.1g/km,製造成本為400450美元/kW,維護費用低於0.01美元/kwh,在滿足這些目標的同時,發動機具有較高的可靠性。
1.2 醇類汽車
醇類汽車就是以甲醇、乙醇等醇類物質為燃料的汽車,使用比較廣泛的是乙醇,乙醇來源廣泛,製取技術成熟,最新的一種利用纖維素原料生產乙醇的技術其可利用的原料幾乎包括了所有的農林廢棄物、城市生活有機垃圾和工業有機廢棄物。目前醇類汽車多使用乙醇與汽油或柴油以任意比例摻和的靈活燃料驅動,既不需要改造發動機,又起到良好的節能、降污效果,但這種摻和燃料要獲得與汽油或柴油相當的功率,必須加大燃油噴射量,當摻醇率大於15%—20%時,應改變發動機的壓縮比和點火提前角。乙醇燃料理論空燃比低,對發動機進氣系統要求不高,自燃性能差,辛烷值高,有較高的抗爆性,揮發性好,混合氣分布均勻,熱效率較高,汽車尾氣污染可減少30%以上。這種汽車最早由福特公司在20世紀80年代中期開發,到2003年底,美國有230多萬輛乙醇汽車,其中多數是道奇和克萊斯勒廂式車——2003年已賣出233466輛。
1.3 氫燃料汽車
氫是清潔燃料,採用氫氣作燃料,只需略加改動常規火花塞點火式發動機,其燃燒效率比汽油高,混合氣可以較大程度地變稀,所需點火能量小,有利於節約燃料。氫氣也可以加入其它燃料(如CNG)中,用於提高效率和減少N02排放。氫的質量能量密度是各種燃料中最高的一種,但體積能量密度最低,其最大的使用障礙是儲存和安全問題。寶馬公司一直致力於氫氣發動機研製,開發了多款氫發動機汽車,其裝有V12氫發動機的7系列轎車是世界上首批量產的氫發動機,該發動機可使用氫氣和汽油兩種燃料。
1.4 二甲醚汽車
二甲醚(DME)是一種無色無味的氣體,具有優良的燃燒性能,清潔、十六烷值高、動力性能好、污染少,稍加壓即為液體,非常適合作為壓燃式發動機的代用能源,使用該燃料的車輛可達到美國加州的超低排放標准。日本NKK公司成功地開發出用劣質煤生產二甲醚的設備,並且和住友金屬工業公司於1998年完成了用二甲醚作為汽車燃料的試驗,二甲醚汽車(DMEV)不會排放黑色氣體污染環境,產生的NOX比柴油少20%。
1.5 氣動汽車
以壓縮空氣、液態空氣、液氮等為介質,通過吸熱膨脹做功供給驅動能量的汽車稱為氣動汽車,氣動發動機不發生燃燒或其他化學反應,排放的是無污染物輻射的空氣或氮氣,真正實現了零污染。目前開發比較成功的是壓縮空氣動力汽車(APV),工作原理類似於傳統內燃機汽車,只不過驅動活塞連桿機構的能量來源於高壓空氣。APV介質來源方便、清潔,社會基礎設施建設費用不高,較容易建造。無燃料燃燒過程,對發動機材料要求低,結構簡單,可借鑒現有內燃機技術因而研發周期短,設計和製造容易。但目前APV能量密度和能量轉換率還不夠高,續駛里程短。1991年法國工程師Guy Negre獲得了壓縮空氣動力發動機的專利,並加盟MDI公司,2000年MDI公司推出的名為「進化」(evolution)的APV,質量僅700kg,其發動機質量僅為35kg,速度可達120km/h,一次充滿壓縮空氣可行駛200km,充氣費用僅為0.3美元,在城市中約可行駛10h,在壓縮空氣站充氣2min就可完成,用氣泵充氣3h可完成。
1.6 電動汽車
世界上第一輛電動車(EV)由美國人在19世紀90年代製造。EV大致分為蓄電池電動汽車(BEV)、燃料電池電動汽車(FCEV)和混合動力電動汽車(HEV)。電動汽車的一個共同特點是汽車完全或部分由電力通過電機驅動,能夠實現低排放和零排放。
蓄電池電動汽車是最早出現的電動汽車。使用鉛酸電池的汽車整車動力性、續駛里程與傳統內燃機汽車有較大的差距,而使用高性能鎳氫電池或者鋰電池又會使成本大大增加。而JtBEV都需有一定充電時間及相應的充電設備,使用場合受到了限制。燃料電池具有近65%的能量利用率,能夠實現零排放、低雜訊,國外最新開發的高性能燃料電池已經能夠實現幾乎與傳統內燃機汽車相當的動力性能,發展前景很好,但成本卻是制約其產業化的瓶頸。在加拿大進行的示範試驗表明,使用燃料電他的公共汽車製造成本為120萬加元,而使用柴油機的公共汽車僅為27.5萬加元。
混合動力汽車融合了傳統內燃機汽車和電動汽車的優點,同時克服了兩者的缺點,近年來獲得了飛速發展,並已經實現了產業化和商業化,PRIUS和INSIGHT兩款混合動力汽車的成功向人們展現了混合動力技術的魅力和巨大的市場潛力。
1.7 以植物油為燃料的汽車
為了尋找可代替石油的新能源,科學家也將目光投向了植物油,正在研製以植物油如大豆油、玉米油及向日葵油為原料的內燃機油。科學家們還在研究生物柴油,這是一種以植物油為原料的燃料,將來可作為柴油的替代品大量用於卡車和輪船。生物柴油中不含硫,因此不會對環境造成酸雨威脅。為生產生物柴油,化學家們正在對植物油進行酯化加工,使之變成甲基酯化合物,燃燒起來更干凈,發動機內殘留物也較少。
2 我國新能源汽車的發展概況
我國天然氣資源豐富,分布廣泛,海南、北京、上海、重慶等省市被列為國家燃氣汽車重點示範城市,各地均在燃油汽車基礎上研製開發改裝了壓縮天然氣汽車和液化石油氣汽車,主要用於計程車、公交客車、大型車輛和工程設施等。一汽—大眾公司開發了捷達LPG,上海交大研製成LPG轎車並和申沃客車聯合開發成功改裝型LPG城市bus,北京開發了CNG城市bus。
山西是產煤大省,甲醇汽車項目已進行多年,目前已達到商業運行階段,所用甲醇汽車採用靈活燃料系統,既可用甲醇,也可用汽油,將乙醇當作有氧燃料使用,現在在河北和黑龍江等地推廣。同時國家制定了乙醇汽油燃料相關標准。我國雲崗汽車公司大同汽車製造廠開發了甲醇中巴車。
我國煤炭資源豐富,政府支持以煤炭為原料製造車用燃料項目。煤直接液化和間接液化製取車用燃料的項目正在積極進行。「十五」期間在雲南和陝西建立了煤直接液化示範廠,以煤為原料合成石油或二甲醚等車用燃料。西安交通大學與中國科學院煤化工研究所經過5年協同攻關,於2000年研製出了「超低排放二甲醚汽車」,通過在TYll00單缸柴油機及裝備有大連柴油機廠生產的CA498柴油機的麵包車上燃用二甲醚的試驗,發現發動機的功率可提高10%-15%,熱效率提高2—3個百分點,雜訊降低10%-15%。
我國從事燃料電池研究的單位有20餘家,質子交換膜(PEM)燃料電池技術已取得較大進展,但與國外還有不小差距,例如,國外將功率50—80kW的PEM燃料電池用於轎車,而我國最大的PEM燃料電池單堆功率為5kW,離轎車使用相距甚遠。我國的金屬燃料電池技術已經達到世界先進水平。
我國的鎳氫電池和鋰電池技術水平也已經達到國際先進水平,比亞迪在2005年上海車展展出的E1電動車已經具備了很好的整車動力性能。
目前國內對壓縮空氣動力汽車的研究報道最多的是浙江大學,他們已經開發出壓縮空氣動力摩托車研究平台,探索出不少有益的結論,正在進一步深入研究,此外重慶大學和同濟大學也做過一些探索性研究。應當說APV在國內的發展才剛剛起步。
3 代用燃料汽車的發展前景
在各種汽車代用燃料中,LPG和CNG最方便投入使用,而且目前已經具有好的配套基礎設施。在排放和經濟性能要求較高而動力性能要求一般的公共交通領域具有很好的應用前景,美國近年來新型公交客車中天然氣汽車就占據了較大比例。在中國這樣的農業大國特別是一些農業大省,乙醇資源豐富,乙醇汽車有良好的應用前景。二甲醚等合成燃料具有很好的排放特性,也將具有很好的應用前景,特別是作為代用柴油應用於混合動力汽車。混合動力汽車毫無疑問是下一代汽車動力系統的主要形式。
蓄電池電動汽車的使用性能不如混合動力汽車和燃料電池汽車,且成本高。氫燃料發動機的能量利用率不如氫氧燃料電池。因而蓄電池電動汽車和氫發動機汽車的發展前景不是十分樂觀。當然隨著太陽能電池技術的發展和突破,也許純電動汽車能迎來一個不錯的發展局面。壓縮空氣動力汽車雖然實現了零污染,但其整車性能與傳統汽車相差太遠,只能在較小的范圍內應用於特定場合。
燃料電池是目前技術條件下能量利用率最高的車用能源。燃料電池的比能量可達200—350Wh/kg,為鋰離子電池的2—3倍;能量轉換效率高達60%~80%,是汽油機或柴油機的1.5~2倍,能實現超低污染甚至零污染,而且燃料電池使用的氫能源是可再生的。目前以甲醇燃料電池技術最為成熟。國外各大石油公司和汽車均在致力於燃料電池汽車的研發以搶佔在未來汽車發展中的灘頭。戴姆勒—賓士汽車公司從1993年到2000年先後推出了NecarI—NecarⅣ和Nebas等系列FCEV,2001年5月Necar4在美國試車,功率55kW,最高車速145km/h,裝載行程450km,最新推出的Necar V-FCEV採用甲醇燃料電池。1997年Ballard動力公司和福特汽車公司組建了Xcellsis公司開發燃料電池轎車,美國AR—CO、殼牌、德士古等石油公司和加州CARB先後加盟,組成世界上最強大的燃料電池車開發聯盟。日本電力中央研究所正在開發一種全面使用耐熱陶瓷的燃料電池,電池在發電效率非常高的1000℃的高溫下工作,電解質的輸出功率達到1W/cm2,相當於傳統燃料電池的5倍。EvomR公司致力於開發鋁和鋅燃料電池,已具有相當水平。
總之對代用燃料的綜合評價應考慮以下因素:燃料成本;車輛成本;對進口石油的依賴程度;有效能源利用率;溫室效應;排放污染;生產、儲運、分銷、加註設施;裝載行駛里程和加註時間;安全性。基於這些因素,目前最容易投入使用的代用燃料是CNG和LPG。電、甲醇和乙醇的綜合評價指數都低於汽油。可以預計LPG和CNG以及乙醇的市場份額將會不斷增加。二甲醚和合成柴油在十年後其市場份額會快速穩定增長。混合動力汽車會進一步發展,迅速增加市場份額。而燃料電池汽車會在20年之後開始實現產業化逐漸增加市場份額。傳統汽油機汽車的市場份額會在20年之後開始出現明顯的下降,但柴油車會在重型車輛領域繼續保持很高的市場份額。
4 結束語
在未來的20年內,汽油和柴油仍是汽車主要的能量來源,但汽油和柴油的質量要求越來越高,發動機技術將快速發展以提高能量利用率。代用燃料會得到迅速運用,天然氣汽車和乙醇汽車會率先大規模投入使用,二甲醚和合成燃料會逐步擴大應用。
混合動力系統會得到快速發展和應用,混合動力汽車將至少在30年內都是汽車工業最切實可行的解決能源問題和污染問題的途徑。因此應當整合資源加速混合動力汽車的開發,搶占汽車技術發展的新高地。
燃料電池是最有前途的車用能量,也是未來汽車的主要能量源,國內石油工業應該與汽車工業聯手開發先進的燃料電池技術,搶占未來先進汽車技術的前沿陣地!
㈤ 新能源材料在汽車上的應用論文2000字
想要介紹一個新能源汽車,就需要介紹它的優點以及它採用的能源,還有最關鍵的是它的續航里程以及提升速度的能力。
㈥ 混合動力電動汽車的研究論文
混合動力電動汽車(Hybrid Electric Vehicle)是傳統燃油汽車和純電動汽車相結合的新車型,具有燃油汽車的動力性能和較低的排放特性,是當前解決節能、環保問題切實可行的方案。 類菱形汽車是湖南大學自主開發的具有完全知識產權的新型汽車,該類型車在安全性與輕量化方面有其獨到的優勢。以此車為平台,本文圍繞類菱形混合動力汽車的總體設計和控制進行了全方位的深入研究和探討。 結合類菱形混合動力電動汽車的結構特點,採用了傳統意義上的差速器即2K-H型錐齒輪負號機構、嚙合方式為ZUWGW的輪系作為動力耦合器。為驗證該方案的可行性,運用UG建立了新型動力耦合器的三維模型,並將其導入Adams軟體中進行了模擬,確定了該耦合器三個輸入輸出端力矩與轉速之間的運動學與動力學關系式。台架實驗也驗證了模擬結論的正確性。 在採用新型動力耦合器的基礎上,設計了一種基於類菱形車平台的新型混合動力驅動鏈,並提出了一套基於CVT新型驅動鏈的混合動力汽車部件設計、選擇與匹配的理論,對整車試制具有指導作用。這是混合動力汽車技術開發的核心和基礎之一,是自主知識產權的重要體現,涉及企業的核心技術機密
㈦ 求一篇2000字左右關於汽車行業發展中傳統能源的限制性的分析的論文
新能源車到底與普通汽車版汽車到底差別在哪裡?絕對不僅僅是「血液」的問題。更多的結構性的變化也盡在其中。以下對新能源的技術做細節的比對,新能源車的心臟到底有何不同?它們都有著什麼樣的技術,它們對節能環保都起到了哪些作用,是什麼樣的工作原理在支持……才能描繪出令人驚贊的低碳節能的工作成績。
弱混與強混的油電混合技術
在北京車展上,大家可以看到的混合動力車型主要有「弱混」、「強混」和「雙模」三種技術類型。
其中,「弱混」車型的工作狀態是車輛在啟動時電動機開始工作,汽油發動機並沒有點火工作,所有的設備工作都是依靠動動機來提供動力。當你松開制動踏板踩下油門起步時,汽油發動機才會啟動工作。當用戶深踩油門加速時,汽油發動機和電動機將同時協同工作,讓提速變的更加明顯。當車輛在高速行駛時動力則完全來自汽油發動機,也就是說電動機只是在汽車加速時介入。如果當前方遇到紅燈用戶踩下剎車減速時,車輛的動能並不是像普通車輛那樣轉化為制動系統的熱能而被白白浪費掉,此時電動機將變身為發電機,它回收損失掉的動能,並以電能的形式存於蓄電池中。這種剎車就會給電池充電相當於「免費加油」的暢快感覺正是混合動力車的魅力所在,是普通車輛所無法給予的。在車輛停穩怠速時,汽油發動機將會關閉,此時只有電動機工作,這就避免了怠速時所產生的高油耗,同時也實現了零油耗和零排放,之後車輛起步時又會重復上面的工作流程。
從上述的工作狀態我們可以看出「弱混」車型主要節油環節在於點火時發動機並不啟動,怠速時發動機也是關閉的,起步和加速時電動機可以提供動力輔助,剎車時可以把損失的動能轉化為電能,高速行駛時多餘的能量還能被轉化為電能儲存在蓄電池中,這就降低了燃油釋放能量的損失,提升了燃油的利用效率。同時還有一點值得讀者注意的就是,混合動力車型由於加速過程中有電動機提供動力輔助,因此其一般都採用的是小排量汽油發動機,就可以達到大排量發動機的動力感受(有點類似增壓發動機的味道),這在一定程度上也節約了燃油。
「弱混」技術的優勢就是製造成本相對低廉,能很好平衡技術與售價的關系,電動系統體積相對小巧不會佔用過多空間。
和「弱混」相對的技術就是「強混」,其特點是動力系統以電動機為基礎動力,汽油發動機為輔助動力。與「弱混」不同的是「強混」電動機的功率更為強大,完全可以滿足車輛在起步和低速時的動力要求。因此「強混」車型無論是在起步還是低速行駛狀態下都不需要啟動發動機,僅依靠電動機都可以完全勝任,在低速狀態下完全就是一款「電動車」的姿態。
當踩下油門加速時,隨著速度的提升汽油發動機就會啟動和電動機通過智能系統來協同高效的工作。當車速達到汽油發動機的經濟時速時,汽油發動機的優勢得以全面發揮,並成為車輛的主要動力來源,同時汽油發動機產生多餘的能量會用來帶動發電機為電池充電。
在急加速和全速運行狀態下車輛需要極大的驅動力,因此電動機也會全速運行協同高速運轉的汽油發動機同時發揮兩者的最大性能,進而達到1 1的效果。當用戶遇到狀況剎車時,汽油發動機和電動機就會立即停止動力供應,達到節約燃油和電能的目的,同時利用車輛動能帶動發電機為電池充電。
從上述的工作狀態我們可以看出「強混」車型主要節油環節除了擁有「弱混」特點之外,其還具有在車輛起步和低速行駛時完全依賴電動機驅動的能力,很好的解決了城市行車中起步、停車、再起步時的油耗很高的問題,因此「強混」可以說是「弱混」的進化版本,克服了「弱混」需要頻繁啟動汽油發動機的問題,從而進一步的降低了油耗。「強混」可以說是一種比較優秀的解決方案,非常適合擁堵的城市中需要頻繁起步停車的行駛狀態。在這樣的擁堵的行駛狀態下可以實現零油耗零排放。當然要享受這些好處的前提就是要付出比「弱混」更高的價錢和為性能更強大的電動機和電池組犧牲些空間。
除了「弱混」和「強混」之外還有一類比較特殊的混合動力車型在國內銷售,那就是中國第一款完全自主技術的比亞迪F3DM雙模電動車。所謂「雙模」就是在電動車系統(EV)的基礎上又加入了一個混合動力系統(HEV),「雙模」可以說是「強混」的升級加強版。目前市售的「雙模」車型只有比亞迪F3DM一款。
自然能源轉換電動車技術
這項技術集光電轉換、風電轉換和二氧化碳吸附轉換等自然能源轉換技術概念於一身,屬於新能源車技術中的未來流派。上汽集團在世博會及北京車展上發布的「葉子」概念車就運用了這一技術。當然,「葉子」這項新能源車技術展示還是以理念為主。
「葉子」在設計中以電能為主要動力來源,其技術核心是自然能源轉換技術。車頂的一片巨型葉子是一部高效的光電轉換器,可吸收太陽能轉化為電能;而陽光追蹤系統,則可以使葉片上的太陽能晶體片可隨太陽照射方向而轉動,提高光能吸收效率。
其四個車輪就是四個風力發電機,通過捕捉散逸的風能,將風能轉變成電能,充入自身電池儲存能源,形成輔助電驅動系統,最大限度拓展利用新能源。
其體採用可吸附二氧化碳的有機金屬結構(MOFs),能模擬綠色植物從空氣中捕獲二氧化碳和水分子,在微生物的作用下釋放出電子,形成電流。生物燃料電池再將產生的電能給鋰電池充電,由電機驅動汽車。同時,它還能將光電轉換中排放的高濃度二氧化碳通過激光發生器轉化為電能為車內照明,或轉化為車內空調製冷劑,不僅僅是「零排放」,更是「負排放」的實現,凈化空氣。
增程型電動車技術
增程型電動車技術,也是目前新能源車技術的一大流派,這一技術流派的特點是電力驅動車輛行駛的主要能源,而汽油則是它的備用能源。例如,通用雪佛蘭Volt就運用了這樣的技術。
與傳統意義上的混合動力汽車相比,增程型電動汽車有著非常明顯的不同之處。在一輛增程型電動汽車上,車輛是全程由電動系統來驅動的,而在傳統混合動力汽車上,車輛是通過電動機或燃油發動機來驅動,或是兩者共同工作來驅動的。在行駛距離較短的情況下,增程型電動汽車的行駛完全僅僅依靠車載電池組提供的電力來完成,而在相對較長的行駛距離情況下,可以由內燃機或者燃料電池提供額外的電能來驅動車輛。電池組和動力推進系統經過精準的設置,可以使車輛在由電池組提供足夠的電能的時候,不需要發動機或者燃料電池進行工作來產生額外的電力。在純電力駕駛過程中,電池組的電能完全可以保證僅需要使用電力就能夠保證車輛順利實現加速、高速行駛,以及爬坡等各種性能。
以下以雪佛蘭Volt為例,詳細解析增程型電動車技術。具體來說,Volt首先依靠電池所儲存的電力行駛,然後依靠汽油發動發電機產生的電力繼續驅動。假設你的Volt電池已充滿電,那麼Volt可以依靠電池中儲存的電力行駛達最多64公里(40英里),期間可以完全實現「零油耗、零排放」。隨著電池電力即將耗盡,增程型汽油發動發電機將自動起動,開始提供為電池提供電力。這樣Volt就能繼續行駛數百公里,直至有條件再次充電或加油。
Volt推進系統全程採用純電力驅動。當電池的電量快耗盡時,它的車載發動發電機會通過燃燒少量汽油來為車輛供電,足以保證Volt繼續行駛數百公里。
一般來說,混合動力汽車可依靠3.8升(1加侖)汽油行駛64到96公里(40到60英里)。與電動車不同的是,當今的混合動力汽車不需要通過連接電源進行充電,而是通過收集剎車時產生的能量以及藉助發電機來補充電力。在低速行駛時,某些混合動力車型可以依靠電力驅動,並在高速行駛時切換到汽油發動機驅動。混合動力汽車的效率一般趕不上電動汽車,同時環保表現也不如後者。
增程型電動車的優點是能夠在零油耗和零排放的情況下,行駛64公里(40英里)。即使在電池電量快耗盡時,增程型電動車也僅僅是使用汽油以供增程型發動發電機發電,提供汽車行駛所需的電力。
增程型電動車可以在電池電量耗盡後繼續行駛,因為增程型汽油發電機會實現無間斷啟動,提供電力驅動汽車。增程型電動車能夠自行產生續航所需電力,而不必停車尋找充電的地方。
氫燃料電池車技術
氫燃料電池車技術,則是目前新能源車技術的較高級流派,這一技術流派的特點是通過電氣化學反應,將氫和氧化合成水,從而直接將化學能轉化為電能,電池組通過像這樣大量串聯的燃料電池,就可以產生足夠的電能來驅動汽車。賓士F800 Style、奧迪Q5HFC和雪佛蘭Equinox等都是包含了這項技術的新能源車。
以下詳細解析氫燃料電池車技術。
氫燃料電池車的燃料電池組位於車輛的中心部位。它通過電氣化學反應,將氫和氧化合成水,從而直接將化學能轉化為電能,在這一過程中並不產生任何實質性的燃燒。具體反應過程為:電池陽極上的氫在催化劑作用下分解為質子和電子,帶陽電荷的質子穿過隔膜到達陰極,帶陰電荷的電子則在外部電路運行,從而產生電能。在陰極上的氧離子在催化劑作用下和電子、質子化合反應成水。電池組通過像這樣大量串聯的燃料電池,就可以產生足夠的電能來驅動汽車。
這類氫燃料電池車通常設置四個座位,空間寬大舒適,並且擁有和傳統汽車相比毫不遜色的高安全性能。它配備了司機及前排乘客安全氣囊、側面安全氣囊、防抱死剎車系統(ABS)、牽引力控制系統(TCS)以及電子穩定裝置(ESP)。與此同時,它的氫燃料存貯裝置也十分先進,該裝置由三個700巴(1巴=0.987個標准大氣壓)的高壓儲氫罐組成,罐體採用碳纖維復合材料,最大氫燃料存儲量為4.2千克,這些燃料足以支持最長320公里的行駛里程。
氫燃料電池車的設計使用壽命為2年或8萬公里,通過在熱絕緣以及運行方案等方面進行的一系列改進,新型氫燃料電池車可以在低於零度的氣候條件下正常啟動及運行,這也是它相比前一代車型的顯著進步之一,而在技術上做到這一點對於燃料電池車的推廣使用至關重要。
以Equinox為例,其燃料電池組由440塊串聯電池組成,電力輸出可達93千瓦,在車載73千瓦(100馬力)同步電動機的共同驅動下,0-100公里/小時的加速只要12秒,而這款前驅車型的最高時速可達每小時160公里。
車聯網電動車技術
這一技術流派地融合了電氣化和車聯網兩大技術,幾乎可以說是對未來城市個人交通的最新解決方案。同樣將展示於世博園區及北京車展的通用EN-V概念車就運用了這項技術。
車聯網技術,即通過整合全球定位系統導航技術、車對車交流技術、無線通信及遠程感應技術奠定了新的汽車技術發展方向,實現了手動駕駛和自動駕駛的兼容。
這類電動車體積小巧、移動便利。以EN-V為例,整車重量僅400多公斤,長約1.5米。而目前傳統汽車重量超過1500公斤,長度更是EN-V長度的三倍。時下一個傳統汽車的停車位可以容納五輛EN-V,這將極大地提高城市停車面積的利用率。
這類電動車的左右兩側車輪分別由各自的電動馬達驅動,馬達動力由鋰電池提供,可通過普通家庭電源進行充電,每次充滿電後可行駛40公里,完全實現零排放。同時,可與電網進行信息互換,選擇最佳充電時間,充分提高公用電力基礎設施的使用效率。
這一新汽車技術的重大突破,還在於自動駕駛方面,如變道警告、盲區探測及適應性巡航控制等技術均得到了變革性的運用。
至於您說的行業標准和國家法規~一時半會是改不了的 這中間當然需要很多部門的努力 許多環節的進行 以及各界人士的共同努力相互促進相互協調 車展只能說是新科技新發明的展示而已 對於新標准新法規應該也有一定促進作用吧~~!
㈧ 高分 電動車英文論文,急!!!
查到10篇關於電動車的文獻。
我想能適合樓主的可能有個一篇兩篇吧。
如果樓主感興趣,可以發郵件到[email protected],我發給你全文。
[1]O'Keefe, M., K. Bennion, and N.R.E. Laboratory, Comparison of Hybrid Electric Vehicle Power Electronics Cooling Options. 2008: National Renewable Energy Laboratory.
[2]Shabashevich, A., et al., Consumer Ready Plug-in Hybrid Electric Vehicle. Team-Fate, University of California, Davis. http://www. teamfate. net/technical/UCDavis_Spring2007_TechReport. pdf, 2007.
[3]Rousseau, A., S. Pagerit, and D. Gao. Plug-in Hybrid Electric Vehicle Control Strategy Parameter Optimization. 2007.
[4]Syed, F., et al., Derivation and Experimental Validation of a Power-Split Hybrid Electric Vehicle Model. IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2006. 55(6): p. 1731.
[5]Moreno, J., M. Ortúzar, and J. Dixon, Energy-Management System for a Hybrid Electric Vehicle, Using Ultracapacitors and Neural Networks. IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2006. 53(2).
[6]Miller, J., Hybrid Electric Vehicle Propulsion System Architectures of the e-CVT Type. IEEE Transactions on Power Electronics, 2006. 21(3): p. 756-767.
[7]Markel, T. and A. Simpson. Plug-In Hybrid Electric Vehicle Energy Storage System Design. 2006.
[8]Wang, C., O. Stielau, and G. Covic, Design considerations for a contactless electric vehicle battery charger. Instrial Electronics, IEEE Transactions on, 2005. 52(5): p. 1308-1314.
[9]Musardo, C., et al. A-ECMS: An Adaptive Algorithm for Hybrid Electric Vehicle Energy Management. 2005: IEEE; 1998.
[10]Faiz, J., et al., Sensorless direct torque control of inction motors used in electric vehicle. Energy Conversion, IEEE Transactions on, 2003. 18(1): p. 1-10.
㈨ 電動汽車發展和關鍵技術的參考文獻
11是
㈩ 關於化學評價的論文
今日化學何去何從?對於這個問題有兩種回答:第一種回答:化學已有200餘年的歷史,是一門成熟的老科學,現在發展的前途不大了;21世紀的化學沒有什麼可搞了,將在物理學與生物學的夾縫中逐漸消亡。第二種回答:20世紀的化學取得了輝煌的成就,21世紀的化學將在與物理學、生命科學、材料科學、信息科學、能源、環境、海洋、空間科學的相互交叉,相互滲透,相互促進中共同大發展。本文主張第二種回答。
一、20世紀化學取得的空前輝煌成就並未獲得社會應有的認同
在20世紀的100年中,化學與化工取得了空前輝煌的成就。這個「空前輝煌」可以用一個數字來表達,就是2 285萬。1900年在Chemical Abstracts(CA)上登錄的從天然產物中分離出來的和人工合成的已知化合物只有55萬種。經過45年翻了一番,到1945年達到110萬種。再經過25年,又翻一番,到1970年為236.7萬種。以後新化合物增長的速度大大加快,每隔10年翻一番,到1999年12月31日已達2 340萬種。所以在這100年中,化學合成和分離了2 285萬種新化合物、新葯物、新材料、新分子來滿足人類生活和高新技術發展的需要,而在1900年前的歷史長河中人們只知道55萬種。從上面的數字還可以看出,化學是以指數函數的形式向前發展的。沒有一門其他科學能像化學那樣在過去的100年中創造出如此眾多的新化合物。這個成就用「空前輝煌」來描述並不過分。但「化學家太謙虛」(這句話是Nature雜志在2001年的評論中說的,參見文獻〔1〕),不會向社會宣傳化學與化工對社會的重要貢獻。因此20世紀化學取得的輝煌成就,並未獲得社會應有的認可。
二、20世紀發明的七大技術中最重要的是信息技術、化學合成技術和生物技術
報刊上常說20世紀發明了六大技術:
1.包括無線電、半導體、晶元、集成電路、計算機、通訊和網路等的信息技術;
2.基因重組、克隆和生物晶元等生物技術;
3.核科學和核武器技術;
4.航空航天和導彈技術;
5.激光技術;
6.納米技術。
但卻很少有人提到包括新葯物、新材料、高分子、化肥和農葯的化學合成(包括分離)技術。上述六大技術如果缺少一兩個,人類照樣生存。但如沒有發明合成氨、合成尿素和第一、第二、第三代新農葯的技術,世界糧食產量至少要減半,60億人口中的30億就會餓死。沒有發明合成各種抗生素和大量新葯物的技術,人類平均壽命要縮短25年。沒有發明合成纖維、合成橡膠、合成塑料的技術,人類生活要受到很大影響。沒有合成大量新分子和新材料的化學工業技術,上述六大技術根本無法實現。這些都是無可爭辯的事實。
但化學和化工界非常謙虛,從來不提抗議。我們應該理直氣壯地大力宣傳20世紀發明了七大技術,即化學合成(包括分離)技術和上述六大技術。這七大技術發明可以按照人類需要的迫切性和由它們衍生的產業規模的大小來排序:
(1)從人類對七大技術發明的需要迫切性來看,化學合成和分離技術應當排名第一,已如前述,因為它是人類生存的絕對需要,沒有它,全世界一半人口要餓死。它還為其餘六大技術發明提供了不可或缺的物質基礎。國外傳媒把哈勃(Haber)的合成氨技術(Haber process)評為20世紀最重要的發明,是很有道理的。
排名第二的是信息技術,第三是生物技術,以下依次是航空航天技術,核技術,納米技術和激光技術。也許有人會問汽車產業不是比飛機還重要嗎?但第一輛內燃機汽車是德國人在1886年發明的,所以汽車、火車、煉鋼等都是19世紀發明的重大技術。而合成氨技術是哈勃在1909年發明,在1918年因而獲得諾貝爾化學獎。高分子合成技術是20世紀50年代發展起來的。新葯物、新材料的合成更是近50年的事。因此合成化學技術是20世紀的重大發明。
(2)從20世紀的七大技術發明衍生的產業規模及其對世界經濟的影響來看,排名次序如下:第一是信息產業,第二是由化學合成(包括分離)技術衍生的石油化工、精細化工、高分子化工和葯物、農葯工業等產業,以及從空氣中分離出氧氣和氮氣,從電解水中分離出氫氣,作為電動汽車的燃料,為解決將來水資源缺少的海水淡化產業等。
第三是飛機、航天、人造衛星及導彈產業,第四是核電站和核工業。這4個產業都是非常大的產業。其中在核產業中,有很大一部分是化工產業,如核燃料的前處理和後處理工業,重氫、重水工業、稀有元素冶煉工業等,又如信息產業和航空航天導彈衛星產業中,都依靠冶金、稀有元素冶煉和高分子等化學合成產業。
相對於前述4個產業而言,排在第五的生物技術產業、排在第六的納米技術產業和排在第七的激光技術產業這3個現在還是小產業。其中納米產業實際上是化學家發明C60等巴基球和碳納米管等衍生出來的合成化學產業,以及用各種方法把化學物質製成納米尺度的合成產業。
所以20世紀和21世紀上半葉理應稱為信息和化學合成時代,要到21世紀下半葉才能稱為生物技術時代,因為目前生物技術的實際應用和產業規模還很小,遠遠不及信息產業和合成化工產業。
三、化學是一門中心科學
化學是一門中心科學,化學與生命、材料等八大朝陽科學有非常密切的聯系,產生了許多重要的交叉學科,但化學作為中心學科的形象反而被其交叉學科的巨大成就所埋沒。
1.化學是一門承上啟下的中心科學。科學可按照它的研究對象由簡單到復雜的程度分為上游、中游和下游。數學、物理學是上游,化學是中游,生命、材料、環境等朝陽科學是下游。上游科學研究的對象比較簡單,但研究的深度很深。下游科學的研究對象比較復雜,除了用本門科學的方法以外,如果借用上游科學的理論和方法,往往可收事半功倍之效。化學是中心科學,是從上游到下游的必經之地,永遠不會像有些人估計的那樣將要在物理學與生物學的夾縫中逐漸消亡。
2.化學又是一門社會迫切需要的中心科學,與我們的衣、食、住(建材、傢具)、行(汽車、道路)都有非常緊密的聯系。我國高分子化學家胡亞東教授最近發表文章指出:高分子化學的發展使我們的生活基本被高分子產品所包圍。化學又為前述六大技術提供了必需的物質基礎。
3.化學是與信息、生命、材料、環境、能源、地球、空間和核科學等八大朝陽科學(sun-rise sciences)都有緊密的聯系、交叉和滲透的中心科學。
化學與八大朝陽科學之間產生了許多重要的交叉學科,但化學家非常謙虛,在交叉學科中放棄冠名權。例如「生物化學」被稱為「分子生物學」,「生物大分子的結構化學」被稱為「結構生物學」,「生物大分子的物理化學」被稱為「生物物理學」,「固體化學」被稱為「凝聚態物理學」,溶液理論、膠體化學被稱為「軟物質物理學」,量子化學被稱為「原子分子物理學」等。
又如人類基因計劃的主要內容之一實際上是基因測序的分析化學和凝膠色層等分離化學,但社會上只知道基因學,看不到化學家在其中有什麼作用。再如分子晶體管、分子晶元、分子馬達、分子導線、分子計算機等都是化學家開始研究的,但開創這方面研究的化學家卻不提出「化學器件學」這一新名詞,而微電子學專家馬上看出這些研究的發展遠景,並稱之為「分子電子學」。
又如化學家合成了巴基球C60,於1996年被授予諾貝爾化學獎,後來化學家又做了大量研究工作,合成了碳納米管。但是許多由這一發明所帶來的研究被人們當作應用物理學或納米科學的貢獻。
內行人知道分子生物學正是生物化學的發展。在這個交叉領域里化學家與生物學家共同奮斗,把科學推向前進。但在中學生或外行看來,「分子生物學」中「化學」一詞消失了,覺得化學的領域越來越小,幾乎要在生物學與物理學的夾縫中消亡。
這樣,化學這門重要的中心科學(central science)反而被社會看作是伴娘科學(bridesmaid science)而不受重視。世界著名的Nature雜志也為化學家鳴不平,在2001年 發表了社論說:「化學的形象被其交叉學科的成功所埋沒」。但化學家仍然很謙虛,居然不喊不叫也不抱怨。化學家的謙虛本是美德,但因此而在社會上造成化學是落日科學(sunset science)的印象,吸引不到優秀的年輕學生,這個問題就大了。
四、化學有沒有理論
有人說:「化學沒有理論,只是一堆白菜,21世紀的化學沒有什麼可搞的了」。這也是化學不被認同的理由之一。對於這個問題,我國著名化學家唐敖慶院士有很好的回答,他指出19世紀的化學有三大理論成就:
1.經典原子分子論,包括建築在定比、倍比和當量定律基礎上的道爾頓原子論,以及包括碳4價及開庫勒提出的苯分子結構等工作為中心內容的分子結構和原子價理論。
2.門捷列夫的化學元素周期律。
3.C.M.古爾德貝格和P.瓦格提出的質量作用定律是宏觀化學反應動力學的基礎。
道爾頓的原子論和門捷列夫的化學元素周期律對於20世紀玻爾建立原子的殼層結構模型具有十分重要的借鑒作用。所以化學和物理學這兩個姐妹學科是互相促進的。
20世紀的化學也有三大理論成就:
1.化學熱力學,可以判斷化學反應的方向,提出化學平衡和相平衡理論。
2.量子化學和化學鍵理論,量子化學家鮑林提出的氫鍵理論和蛋白質分子的螺旋結構模型,為1953年沃生和克里克提出DNA分子的雙螺旋模型奠定了基礎,後者又為破解遺傳密碼奠定基礎。所以化學與生物學也是互相促進的。
3.20世紀60年代發展起來的分子反應動態學。
沒有這三大理論,要取得合成2 285萬種化合物的輝煌成就是不可能的。因此,「化學沒有理論,只是一堆白菜」的說法,是不公正的。
到了21世紀,世界數學家協會提出七大數學難題,籌集了700萬美元,懸賞100萬美元給每一個難題的解決者。
物理學提出了五大理論難題:
1.4種作用力場的統一問題,相對論和量子力學的統一問題。
2.對稱性破缺問題。
3.占宇宙總質量90%的暗物質是什麼的問題。
4.黑洞和類星體問題。
5.誇克禁閉問題等。
21世紀的生物學也有重大難題和奮斗目標:
1.後基因組學和人類疾病的消除。
2.蛋白質組學。
3.腦科學。
4.生物如何進化?生命如何起源等。
但化學家又比較謙虛,好像沒有人明確提出哪些是化學要解決的世紀難題。這樣與物理學和生物學相比,就會顯得化學沒有什麼偉大的目標了。其實化學家心目中是有自己的奮斗目標的,只是不願多說。但這又造成「化學無理論」的錯誤印象。這是近年來在世界范圍內出現的淡化化學的思潮的主觀原因之一。那麼化學果真提不出重大難題嗎?作者曾經初步提出21世紀化學有四大難題。
五、21世紀化學的四大難題
1.化學的第一根本規律(第一個世紀難題):建立精確有效而又普遍適用的化學反應的含時多體量子理論和統計理論。
化學是研究化學變化的科學,所以化學反應理論和定律是化學的第一根本規律。19世紀C.M.古爾德貝格和P.瓦格提出的質量作用定律,是最重要的化學定律之一,但它是經驗的、宏觀的定律。
H.艾林的絕對反應速度理論是建築在過渡態、活化能和統計力學基礎上的半經驗理論。過渡態、活化能和勢能面等都是根據不含時間的薛定諤第一方程來計算的。所謂反應途徑是按照勢能面的最低點來描繪的。這一理論和提出的新概念雖然非常有用,但卻是不徹底的半經驗理論。
近年來發展了含時Hartree-Fock方法,含時密度泛函理論方法,以酉群相干態為基礎的電子-原子核運動方程理論,波包動力學理論等。但目前這些理論方法對描述復雜化學體系還有困難。
所以建立嚴格徹底的微觀化學反應理論,既要從初始原理出發,又要巧妙地採取近似方法,使之能解決實際問題,包括決定某兩個或幾個分子之間能否發生化學反應?能否生成預期的分子?需要什麼催化劑才能在溫和條件下進行反應?如何在理論指導下控制化學反應?如何計算化學反應的速率?如何確定化學反應的途徑?等等,是21世紀化學應該解決的第一個難題。
2.化學的第二個世紀難題:分子結構及其和性能的定量關系。
這里「結構」和「性能」是廣義的,前者包含構型、構象、手性、粒度、形狀和形貌等,後者包含物理、化學和功能性質以及生物和生理活性等。雖然W.Kohn從理論上證明一個分子的電子雲密度可以決定它的所有性質,但實際計算困難很多,現在對結構和性能的定量關系的了解,還遠遠不夠。要大力發展密度泛函理論和其他計算方法。這是21世紀化學的第二個重大難題。例如:
① 如何設計合成具有人們期望的某種性能的材料?
② 如何使宏觀材料達到微觀化學鍵的強度?例如「金屬胡須」的抗拉強度比通常的金屬絲大一個數量級,但還遠未達到金屬-金屬鍵的強度,所以增加金屬材料強度的潛力是很大的。又如目前高分子纖維達到的強度要比高分子中的共價鍵的強度小兩個數量級。這就向人們提出如何挑戰材料強度極限的大難題。
③ 溶液結構和溶劑效應對於性能的影響。
④ 具有單分子和多分子層的膜結構和性能的關系。以上各方面是化學的第二個根本問題,其迫切性可能比第一個問題更大,因為它是解決分子設計和實用問題的關鍵。
3.化學的第三個世紀難題:生命現象中的化學機理問題。
充分認識和徹底了解人類和生物體內分子的運動規律,無疑是21世紀化學亟待解決的重大難題之一。例如:
① 研究配體小分子和受體生物大分子相互作用的機理,這是葯物設計的基礎。
② 化學遺傳學為哈佛大學化學教授Schreiber所創建。他的小組合成某些小分子,使之與蛋白質結合,並改變蛋白質的功能,例如使某些蛋白酶的功能關閉。這些方法使得研究者們不通過改變產生某一蛋白質的基因密碼就可以研究它們的功能,為開創化學蛋白質組學,化學基因組學(與生物學家以改變基因密碼來研究的方法不同)奠定基礎。因此小分子配體與生物大分子受體的相互作用的機理,是一個重大的理論化學問題,值得人們關注。
③ 光合作用的機理——活分子催化劑葉綠素如何利用太陽能把很穩定的CO2和H2O分子的化學鍵打開,合成碳水化合物〔CH2O]n,並放出氧氣,供人類和其他動物使用。
④ 生物固氮作用的機理。
⑤ 搞清楚牛、羊等食草動物胃內酶分子如何把植物纖維分解為小分子的反應機理,為充分利用自然界豐富的植物纖維資源打下基礎。
⑥ 人類的大腦是用「泛分子」組裝成的最精巧的計算機。如何徹底了解大腦的結構和功能將是21世紀的腦科學、生物學、化學、物理學、信息和認知科學等交叉學科共同來解決的難題。
⑦ 了解活體內信息分子的運動規律和生理調控的化學機理。
⑧ 了解從化學進化到手性和生命起源的飛躍過程。
⑨ 如何實現從生物分子(biomolecules)到分子生命(molecular life)的飛躍?如何製造活的分子(make life),跨越從化學進化到生物進化的鴻溝。
⑩ 蛋白質和DNA的理論研究。
4.化學的第四個世紀難題:納米尺度的基本規律。
當尺度在十分之幾到10 nm的量級,正處於量子尺度和經典尺度的模糊邊界(fuzzy boundary)中,有許多新的奇異特性和新的效應,新的規律和重要應用,值得理論化學家去探索研究。下面舉例說明納米效應:
① 如以銀的熔點和銀粒子的尺度作圖,則當粒子尺度在150 nm以上時,熔點不變,為960.3 ℃,即通常的熔點。以後熔點隨尺度變小而下降,到5 nm時為100 ℃。又如金的熔點為1 063 ℃,納米金的熔化溫度卻降至330 ℃。在納米尺度,熱運動的漲落和布朗運動將起重要的作用。因此許多熱力學性質,包括相變和「集體現象」(collective phenomena)如鐵磁性、鐵電性、超導性和熔點等都與粒子尺度有重要的關系。
② 納米粒子的比表面很大,由此引起性質的不同。例如納米鉑黑催化劑可使乙烯催化反應的溫度從600 ℃降至室溫。這一現象為新型常溫催化劑的研製提供了基礎,有非常重要的應用前景。納米催化劑能否降低反應活化能?這是值得研究的一個理論問題。
③ 當代信息技術的發展,推動了納米尺度磁性(nanoscale magnetism)的研究。
④ 電子或聲子的特徵散射長度,即平均自由程,在納米量級。當納米微粒的尺度小於此平均自由途徑時,電流或熱的傳遞方式就發生質的改變。
⑤ 與微粒運動的動量p=mV相對應的de Broglie波長l=h/p,通常也在納米量級,由此產生許多所謂「量子點」(quantum dots)的新現象。所以納米分子和材料的結構與性能關系的基本規律是21世紀的化學和物理需要解決的重大難題之一。
六、化學家缺少品牌意識,沒有在社會上樹立化學的美好品牌
化學沒有樹立品牌,化學與化工被認為是污染源,這也是缺少生源的原因之一。其實,造成環境污染的不僅僅是化學,更重要的是森林破壞,水土流失,沙漠化和沙塵暴,汽車尾氣排放,煤燃燒等。而分析、監測、治理環境污染的正是化學家。化學家已提出綠色化學的奮斗目標。化學家不但要認識世界、改造世界,還要保護世界。在於增強自身對化學污染的防護意識
在於習得應對化學品傷害的急救措施
更在於提高自身在極端惡劣環境下的存活能力……
據上海某著名高校F化學系一位搞有機化學的老教授Y自稱
一次生病住醫院,開刀,要全身麻醉
醫師們按常規量開出的麻醉處方竟然毫無效果
double之後他還意識清醒,沒有暈過去
楞是加到三倍劑量才把他擺平
教授Y最後總結道,「老子玩了一輩子乙醚,還怕那些個?」