电动汽车电池隔热
1. 如何对电动汽车动力电池散热方法在这
那我分享下GLPOLY导热硅胶片XK-P25在新能源汽车电池包上动力电池上的成功应用。
新能源汽车这两年是有发光又发热,新闻里是关于新能源汽车的利好政策,朋友圈是振奋人心的新能源汽车大单。很有幸,GLPOLY的导热硅胶片XK-P25也是搭载这一波新能源的好政策,结结实实的应用在了各大品牌的新能源汽车电池包里面,帮助新能源电池包更好的做热传导使者。
GLPOLY的导热硅胶片XK-P25,是一款柔软度非常好、压缩量可达到50%以上的导热硅胶片,刚好在汽车电池包里面,需要的就是压缩量大,可以最大化的实现有效接触面积的导热硅胶片,XK-P25导热硅胶片完美的匹配了这一需求,而且汽车工作时是连续抖动震动的,导热硅胶片XK-P25的柔软度,刚好可以起到减震、缓冲的效果,并且紧紧的贴合在热源与散热器之间,保证了汽车运动中的热传导有效可靠性。
GLPOLY的导热硅胶片XK-P25热阻低,比同导热系数的普通导热硅胶片,热阻更低,并且可靠性更好。分享个经典案例就是,宇通大巴的一个电池包散热,最开始选择了三款导热系数(客户实测)一样的导热硅胶片做验证,刚开始一周数据显示,三款导热硅胶片的温升相差在3度以内,这个3度也是客户正常的考查范围,皆可接受,本来客户还想着既然三款导热硅胶片热传导效果差不多,是不是可以以价格进行招标,结果在这期间,实验室数据一直照常记录,2个星期后,招标程序还没走完,实验数据却发生了比较大的变化,在另外两款材料数据波动频繁的情况下,GLPOLY的导热硅胶片XK-P25表现的异常稳定,简直可以说是XK-P25导热硅胶片有点太淡定了,整个一个月的数据下来,波动浮动非常小,几乎等同一条直线(个别点微调),这个结果让客户惊讶不已,也帮助客户果断了做了一个决定,至少要保证8年以上寿命的汽车,可靠性可想而知,选择GLPOLY的XK-P25导热硅胶片似乎更能让客户安心。接下来的结果可想而知,GLPOLY的导热硅胶片XK-P25被写进了BOM表,并且是唯一的料号。距离现在,已经连续大批量出货一年有余,而且不断在新项目、其他品牌的案子中成功应用。
2. 动力电池是电动汽车的核心 那么如何给电动汽车动力电池散热
动力电池是电动汽车的核心,耐高温和防水及受得冻。电动汽车出现车开不动,第一时间会想到“核心”(电池)出了问题,那在夏天高温天气下,动力电池能够受得了这高温吗?
如何给电动汽车动力电池散热?动力电池工作电流大,产热量大,同时电池包处于一个相对封闭的环境,就会导致电池的温度上升。这是因为锂电池中的电解质,电解质在锂电池内部起电荷传导作用,没有电解质的电池是无法充放电的电池。
锂电池大部分是易燃、易挥发的非水溶液组成,这个组成体系相比水溶液电解质组成的电池有更高的比能量和电压输出,符合用户更高的能量需求。因为非水溶液电解质本身易燃、易挥发,浸润在电池内部,也形成了电池的燃烧根源。
因此上述两种电池材料的工作温度都不得高于60℃,但现在室外温度已接近40℃,同时电池本身产热量大,将导致电池的工作环境温度上升,而如果出现热失控,情况将十分危险了。为了避免变成“烧烤”,给电池散热就尤为重要了。
动力电池的电池包散热有主动和被动两种,两者之间在效率上有很大的差别。被动系统所要求的成本比较低,采取的措施也较简单。主动系统结构相对复杂一些,且需要更大的附加功率,但它的热管理更加有效。不同导热界面材料的传热介质的散热效果不同,空冷和液冷各有优劣。
采用气体(空气)作为导热绝缘材料传热介质的主要优点有:结构简单,质量轻,有害气体产生时能有效通风,成本较低;不足之处在于:与电池壁面之间换热系数低,冷却速度慢,效率低。目前应用较多。采用液体作为传热介质的主要优点有:
与电池壁面之间换热系数高,冷却速度快;不足之处在于:密封性要求高,质量相对较大,维修和保养复杂,需要水套、换热器等部件,结构相对复杂。在实际的电动大巴应用中,由于电池组容量大、体积大,相对来讲功率密度比较低,因此多采用风冷方案。而对于普通乘用车的电池组,其功率密度则要高得多。相应的,它对散热的要求也会更高,所以水冷的方案也更加普遍。
不同的电池包结构传感器会根据测温点和需求来定。温度传感器会被放置在最具代表性、温度变化幅度最大的位置,例如空气的进出口位置以及电池包的中间区域。特别是最高温和最低温处,以及电池包中心热量累积较厉害的区域。这样有助于将电池的温度控制在一个相对安全的环境,避免过热和过冷对电池造成危险。
3. 电动汽车电池箱加热
电池是有使用温度范围的,所以,有些电动车有电池加热/冷却系统,用了隔热材料如果没有相应的加热/冷却系统,冬天也照样会过热,导致电池损坏。
相关知识:
电动汽车锂电池的最佳工作温度范围是:25~40 ℃。
4. 电动汽车高温下能充电吗
高温天气不可在阳光暴晒下充电,不能在行驶后立即充电。电时尽量选择阴凉通风的环境,太过闷热的环境不利于充电状态,还会破坏电池和减少充电器的寿命。
在使用过程中,根据实际情况把握充电时间和充电次数。过度充电、过度放电和充电不足会缩短电瓶寿命。
电动汽车可充电的温度一般在-20℃~80℃,温度过低或者过高都会对电池、整车线路产生损害,一般的电动汽车都有过温、低温保护,在超过某个温度以后会减小充电电流,或者中断充电。正常的使用环境下不会有什么问题,夏季40度左右是可以充电的。
(4)电动汽车电池隔热扩展阅读:
在如今的高温天气,电动汽车尽量不要在户外阳光直接暴晒下长时间充电,
一是更好的保养电动汽车。
二是规避电池损坏甚至自燃的风险。电池在使用过程中对温度比较敏感,锂电池的工作温度范围宽为-20℃~60℃。
而电池在环境温度超过60°时,随着电池工作的升温,锂电池有过热燃烧、爆炸的风险,但电动汽车发生自燃的概率是极小的,如有事故发生主要是由于线路老化、遇水短路造成的。
车辆本身和充电设备都会有过温保护,并配备有BMS系统,控制电压、电量,协调车辆需要和供给平衡。理论上来说,电动汽车在充电过程中是很安全的,但不排除汽车在高温暴晒下会造成线路老化等损害。
5. 电动汽车里面的电池组是怎么散热的
目前主要的方式分三种:第一是没有热管理系统,也就是不刻意让电池散热,采用自然降温的方式,这些电池在制造工艺等方面都比较先进,比如Leaf电动车。第二种是采用风冷:主要有通过电池包内循环降温散热和通过外部风扇通风降温,其中前者占绝大部分,后者比较少。第三种是水冷或者别的液体介质降温,不是很常见
6. 电动汽车电池工作温度一般为多少
电芯适宜温度在0-40°C。
因为电芯的适宜温度是0-40°C,温度过高过低都会影响电芯的活性 而且会造成不可逆的损伤,甚至会影响电芯寿命。电动车充电时,如果电池温度低于摄氏0度,则需要先为电池预热后才能进行充电,这也会使得充电过程增长,不利于电池的保养。
在为车辆充电时,电池组温度升高,若温差太大,则会引起阴阳极板上的活性物质的化学反应,从而缩短电池寿命,相对的,电池温度太低时,会使电池蓄电容量减少,容易过度放电,进而使电池寿命缩短。
(6)电动汽车电池隔热扩展阅读:
无论是高温还是低温,人们都需要打开空调进行温度调节。因此额外的电量损耗,也导致了纯电动车续航里程的下降。再加上,本身电池活性就受到温度影响,因此续航里程会不可避免的缩水。
现阶段的动力电池组技术还没办法消除温度对于电池活性的影响,因此如果车主朋友选择在冬天或者是夏季出行的时候,一定要先确认好车辆的续航里程是否充足。
同时,一旦发现在高温或者是低温天气下,车辆续航里程急速下降或是出现其他问题,一定要及时处理,确保自身人员安全。
7. 锂电池,电动汽车的,保温,散热系统,容易坏吗万一坏了,锂电池,全部报废了!有什么机械类型,
电动汽车的护理锂电池方法,锂电池若是新买的,那么要先用完电之后完全充满一次,这样使用起来会更好。平时保养,不要把电量用尽才充电,而应当在电量低于20%时充电。若是还有超过20%就充电,容易造成损耗,电池整体储电量减少电池不要等到没电才充电一般我们都会有一种想法就是手机的电池电力要全部放完再充电比较好基本上是没错的,因为我们在以前使用的充电电池大部分是镍氢(NiH电池,而镍氢电池有所谓的记忆效应若不放完电再充的话会导致电池寿命急速减少。因此我们才会用到最后一滴电才开始充电。但现在的手机及一般IA产品大部分都用锂(Li)电池,而锂电池的话就没有记忆效应的问题。若大家还是等到全部用完电后再充的话反而会使得锂电池内部的化学物质无法反应而寿命减少。最好的方法就是没事就充电让它随时随地保持最佳满格状态,这样你的电池就可用的又长又久喔。这是从厂商那得到的讯息,并经过本身测试而得。
8. 纯电动车电池一般在多少公里内需要冷却或加热
实验研究表明,纯电动汽车所用动力锂电池最适宜工作的(充放电)温度为35~45℃,在冬季严寒地区(如-25℃以下温度)使用时,动力锂电池的放电性能、充电接受能力都受低温影响而大大下降,比如若动力电池包布置在车厢地板下面,其底部即使是靠车身底板完全密封也难免受外界低温影响,从而在行车过程中可能电池放电的产生的热量小于电池包向外界的散热量,致使各电池单体的温度不在最佳工作范围内;在室外停车充电时各电池单体停止散热,同时风道再不输送舱内等温的空气以维持包内温度,导致无论快充还是慢充都是效率低下;而早晨驻车启动时,若电动车整夜都停在室外则极难在较短时间内启动,上述问题都会影响电动汽车在严寒地区的动力性和续驶里程,甚至影响动力电池的使用寿命,严重限制了其使用推广的范围。
为了解决上述低温问题,现阶段的做法如下:在电池包内设置温控装置,同时在电池包内部合理设置功率电阻单元或电加热膜材料,BMS(电池管理系统)检测到电池单体环境温度低于设定温度时,使温控装置开始工作,利用电池包本身的电池电量对电池进行加热,当温度高于设定温度时就自动关闭加热。在理想的实验室中实验表明,该加热系统从-25℃加热至设定温度所需时间小于10分钟,但实际严寒地区温度的变化和电动汽车使用工况的复杂,使加热时间极可能远大于这个时间,而且该加热系统如果频繁使用,会大大消耗电池本身的电能,影响整车的动力性和续驶里程。而利用外界热源的电池加热采暖技术,目前国内外尚处在探索阶段。
9. 汽车发电机电池隔热保温有什么办法
为防止蓄电池过冷发生冻结及影响 起动性能,冬季时,可给蓄电池做一个夹层保温电池箱,以提 高蓄电池的温度。