纯电动汽车永磁同步电机结构图
A. 现在纯电动汽车的电机,用的比较多的是永磁同步电机,请问这种电机是直流电机还是交流电机
车用永磁同步电机是交流电机,现在都是用空间矢量控制。和电机配套的还有电机控制器,实现直流(电池)向交流的逆变来实现控制。
B. 纯电动汽车搭载的交流异步电机与永磁同步电机有何区别
不管是说起特斯拉还是蔚来汽车的动力系统,我们都能听到异步电机、永磁同步电机这两个关键词,那么搭载了这两种不同技术的电机有什么优缺点呢?今天,就通过特斯拉ModelS车型来一起聊一聊吧。
综述
异步感应电机和永磁同步电机有各自的优点、缺点。当汽车处于高速行驶时,异步感应电机能够保持高速运转和高效的电能使用效率。而在面对反复启停、加减速时,调速性能好的永磁同步电机仍能够保持较高效率。而关于电机的选择,取决于主机厂最终的车型的定位以及能耗的策略。但是从目前电机技术的发展来看,特斯拉已经走在了行业的前列。
本文来源于汽车之家车家号作者,不代表汽车之家的观点立场。
C. 纯电动汽车使用永磁同步电机和异步电机的利弊代表车型
1.永磁同步电机
永磁同步电机是由永磁体励磁产生同步旋转磁场的同步电机,永磁体作为转子产生旋转磁场,三相定子绕组在旋转磁场作用下通过电枢反应,感应三相对称电流。此时转子动能转化为电能,永磁同步电机作发电机(generator)用;此外,当定子侧通入三相对称电流,由于三相定子在空间位置上相差120,所以三相定子电流在空间中产生旋转磁场,转子旋转磁场中受到电磁力作用运动,此时电能转化为动能,永磁同步电机作电动机(motor)用。
优点:
1.效率高:因为它的励磁磁场(转子磁场)是由磁铁提供的,所以省去一部分励磁磁场所需的电能。
2.调速范围大:由于他是永磁作为励磁磁场,因此调整电流与频率即可很大范围调整电机的功率和转速。
3.体积小重量轻:因为它的结构简单,因此无论体积还是重量都相对较小。
4.发热小,密封性强,免维护。
缺点:
1.抗震性较差:由于现在大部分永磁材料都采用钕铁硼强磁材料,这种材料较为硬脆,因此受到强烈震动有可能会碎裂。
2.抗热冲击较差:由于转子采用磁性材料,而电机在运行或者环境温度过高情况下会引起磁铁退磁,因此会造成动力下降
D. 电动汽车用永磁同步电机电机控制器主电路结构有没有主动放电回路
根据设计原理不同,应该不一样,但是我个人觉得不可能单独加一个额外的放电回路,增加成本,车辆行驶中,高速时IGBT故障,只要主接触器没有断开,直流侧不是有电池钳位么。
E. 纯电动汽车的结构布置
纯电动汽车的结构:纯电动汽车的基本构造有哪些
电动汽车的结构布置各式各样,比较灵活,概括起来分为纯电动汽车电动机中央驱动和电动轮驱动两种形式。电动机中央驱动形式借用了内燃机汽车的驱动方案,将内燃机换成电动机及其相关器件,用一台电动机驱动左右两侧的车轮。电动轮驱动形式的机械传动装置的体积与质量较电动机中央驱动形式的大大减小,效率显著提高,代价是增加了控制系统的复杂程度与成本。
纯电动汽车的结构:纯电动汽车有哪些种类
纯电动汽车发展至今,种类较多,通常按车辆用途、车载电源数目以及驱动系统的组成进行分类。按照用途不同分类,纯电动汽车可分为电动轿车、电动货车和电动客车三种。
(1)电动轿车是目前最常见的纯电动汽车。除了一些概念车,纯电动轿车已经开始批量生产,东风日产启辰晨风、比亚迪秦已进入汽车市场。
(2)电动货车用作功率运输的电动货车目前还比较少,而在矿山、工地及一些特殊场地,则早已出现了一些大吨位的纯电动载货汽车。
(3)电动客车,目前纯电动小客车也较少见;纯电动大客车用作公共汽车,在一些城市的公交线路以及世博会、世界性的运动会上,已经有了良好的表现。
纯电动汽车的结构:纯电动汽车发展历程是怎样的
早在19世纪后半叶的1873年,英国人罗伯特·戴维森制作了世界上最初的可供实用的电动汽车。这比德国人戴姆勒(Gottlieb Daimler)和本茨(Karl Benz)发明汽油发动机汽车早了10年以上。
戴维森发明的电动汽车是一辆载货车,长4800mm,宽1800mm,使用铁、锌、汞合金与硫酸进行反应的一次电池。其后,从1880年开始,应用了可以充放电的二次电池。从一次电池发展到二次电池,这对于当时电动汽车来讲是一次重大的技术变革,由此电动汽车需求量有了很大提高。在19世纪下半叶成为交通运输的重要产品,写下了电动汽车在人类交通史上的辉煌一页。1890年法国和英伦敦的街道上行驶着电动大客车,当时的车用内燃机技术还相当落后,行驶里程短,故障多,维修困难,而电动汽车却维修方便。
在欧美,电动汽车最盛期是在19世纪末。1899年法国人考门·吉纳驾驶一辆44kW双电动机为动力的后轮驱动电动汽车,创造了时速106km的记录。
1900年美国制造的汽车中,电动汽车为15755辆,蒸汽机汽车1684辆,而汽油机汽车只有936辆。进入20世纪以后,由于内燃机技术的不断进步,1908年美国福特汽车公司T型车问世,以流水线生产方式大规模批量制造汽车使汽油机汽车开始普及,致使在市场竞争中蒸汽机汽车与电动汽车由于存在着技术及经济性能上的不足,使前者被无情的岁月淘汰,后者则呈萎缩状态。
纯电动汽车的结构:纯电动汽车的核心技术是什么
发展电动汽车必须解决好4个方面的关键技术:电池技术、电机驱动及其控制技术、电动汽车整车技术以及能量管理技术。
电池技术电池是电动汽车的动力源泉,也是一直制约电动汽车发展的关键因素。电动汽车用电池的主要性能指标是比能量(E)、能量密度(Ed)、比功率(P)、循环寿命(L)和成本(C)等。要使电动汽车能与燃油汽车相竞争,关键就是要开发出比能量高、比功率大、使用寿命长的高效电池。
电力驱动及其控制技术电动机与驱动系统是电动汽车的关键部件,要使电动汽车有良好的使用性能,驱动电机应具有调速范围宽、转速高、启动转矩大、体积小、质量小、效率高且有动态制动强和能量回馈等特性。目前,电动汽车用电动机主要有直流电动机(DCM)、感应电动机(IM)、永磁无刷电动机(PMBLM)和开关磁阻电动机(SRM)4类。
电动汽车整车技术电动汽车是高科技综合性产品,除电池、电动机外,车体本身也包含很多高新技术,有些节能措施比提高电池储能能力还易于实现。采用轻质材料如镁、铝、优质钢材及复合材料,优化结构,可使汽车自身质量减轻30%-50%;实现制动、下坡和怠速时的能量回收;采用高弹滞材料制成的高气压子午线轮胎,可使汽车的滚动阻力减少50%;汽车车身特别是汽车底部更加流线型化,可使汽车的空气阻力减少50%。
能量管理技术蓄电池是电动汽车的储能动力源。电动汽车要获得非常好的动力特性,必须具有比能量高、使用寿命长、比功率大的蓄电池作为动力源。而要使电动汽车具有良好的工作性能,就必须对蓄电池进行系统管理。
纯电动汽车的结构:纯电动汽车在中国的发展现状及未来前景如何
中国电动汽车虽然没有欧美等国家起步早, 但国家从维护能源安全, 改善大气环境, 提高汽车工业竞争力, 实现我国汽车工业的跨越式发展的战略高度考虑, 从“八五”开始到现在, 电动汽车研究一直是国家计划项目, 并在2001 年设立了“电动汽车重大科技专项”。通过组织企业、高等院校和科研机构, 集中各方面力量进行联合攻关, 现正处于研发势头强劲阶段, 部分技术已经赶上甚至超过世界先进水平。
随着电动汽车行业竞争的不断加剧,大型电动汽车企业间并购整合与资本运作日趋频繁,国内优秀的电动汽车企业愈来愈重视对行业市场的研究,特别是对企业发展环境和客户需求趋势变化的深入研究。正因为如此,一大批国内优秀的电动汽车品牌迅速崛起,逐渐成为电动汽车行业中的翘楚!
另外,国务院印发了《节能与新能源汽车产业发展规划(2012-2020年)》(以下简称《发展规划》)的通知,其中删除了征求意见稿中“近期以混合电动车为重点”和“中/重度混合动力乘用车占乘用车年产销量的50%以上”的字句。对此业界专家认为,这样有效避免之前直接点明以混合电动车为重点而可能引起的新能源发展路线之争,又回避了之前定出的难以达到的高指标,再次明晰了未来新能源发展目标。
F. 电动车电机的构造
电动机的结构:由定子、转子和其它附件组成。
定子(静止部分)
定子铁心构造:定子铁心一般由0.35~0.5毫米厚表面具有绝缘层的硅钢片冲制、叠压而成,在铁心的内圆冲有均匀分布的槽,用以嵌放定子绕组。
定子绕组构造:由三个在空间互隔120°电角度、队称排列的结构完全相同绕组连接而成,这些绕组的各个线圈按一定规律分别嵌放在定子各槽内。
电动机接线盒内的接线:电动机接线盒内都有一块接线板,三相绕组的六个线头排成上下两排,并规定上排三个接线桩自左至右排列的编号为1(U1)、2(V1)、3(W1),下排三个接线桩自左至右排列的编号为6(W2)、4(U2)、5(V2),.将三相绕组接成星形接法或三角形接法。凡制造和维修时均应按这个序号排列。
机座构造:机座通常为铸铁件,大型异步电动机机座一般用钢板焊成,微型电动机的机座采用铸铝件。封闭式电机的机座外面有散热筋以增加散热面积,防护式电机的机座两端端盖开有通风孔,使电动机内外的空气可直接对流,以利于散热。
2. 转子(旋转部分)
三相异步电动机的转子铁心:构造:所用材料与定子一样,由0.5毫米厚的硅钢片冲制、叠压而成,硅钢片外圆冲有均匀分布的孔,用来安置转子绕组。通常用定子铁心冲落后的硅钢片内圆来冲制转子铁心。
三相异步电动机的转子绕组构造:分为鼠笼式转子和绕线式转子。
鼠笼式转子:转子绕组由插入转子槽中的多根导条和两个环行的端环组成。若去掉转子铁心,整个绕组的外形像一个鼠笼,故称笼型绕组。小型笼型电动机采用铸铝转子绕组,对于100KW以上的电动机采用铜条和铜端环焊接而成。
绕线式转子:绕线转子绕组与定子绕组相似,也是一个对称的三相绕组,一般接成星形,三个出线头接到转轴的三个集流环上,再通过电刷与外电路联接。
相异步电动机的其它附件
端盖:支撑作用。
轴承:连接转动部分与不动部分。
轴承端盖:保护轴承。
风扇:冷却电动机。
(6)纯电动汽车永磁同步电机结构图扩展阅读
电动车电机 是指用于电动汽车的驱动电机。根据其使用环境与使用频率的不同,形式也不同。不同形式的电机其特点也不一样。电动车电机按照电机的通电形式来分,可分为有刷电机和无刷电机两大类;按照电机总成的机械结构来分,一般分为“有齿”和“无齿”
永磁式直流电机:由定子磁极、转子、电刷、外壳等组成。
定子磁极采用永磁体(永久磁钢),有铁氧体、铝镍钴、钕铁硼等材料。按其结构形式可分为圆筒型和瓦块型等几种。
转子一般采用硅钢片叠压而成,漆包线绕在转子铁心的两槽之间(三槽即有三个绕组),其各接头分别焊在换向器的金属片上。
电刷是连接电源与转子绕组的导电部件,具备导电与耐磨两种性能。永磁电机的电刷使用单性金属片或金属石墨电刷、电化石墨电刷。
2. 无刷直流电机:由永磁体转子、多极绕组定子、位置传感器等组成。
无刷直流电机的特点是无刷,采用半导体开关器件(如霍尔元件)来实现电子换向的,即用电子开关器件代替传统的接触式换向器和电刷。它具有可靠性高、无换向火花、机械噪声低等优点。
位置传感器按转子位置的变化,沿着一定次序对定子绕组的电流进行换流(即检测转子磁极相对定子绕组的位置,并在确定的位置处产生位置传感信号,经信号转换电路处理后去控制功率开关电路,按一定的逻辑关系进行绕组电流切换)。
3. 高速永磁无刷电机:由定子铁心、磁钢转子、太阳轮、减速离合器、轮毂外壳等组成。
电机盖子上面可以装上霍尔传感器,用以测速。
位置传感器有磁敏式、光电式和电磁式三种类型。
采用磁敏式位置传感器的无刷直流电动机,其磁敏传感器件(例如霍尔元件、磁敏二极管、磁敏诂极管、磁敏电阻器或专用集成电路等)装在定子组件上,用来检测永磁体、转子旋转时产生的磁场变化。电动汽车多用的是霍尔元件。
采用光电式位置传感器的无刷直流电动机,在定子组件上按一定位置配置了光电传感器件,转子上装有遮光板,光源为发光二极管或小灯泡。转子旋转时,由于遮光板的作用,定子上的光敏元器件将会按一定频率间歇间生脉冲信号。
采用电磁式位置传感器的无刷直流电动机,是在定子组件上安装有电磁传感器部件,当永磁体转子位置发生变化时,电磁效应将使电磁传感器产生高频调制信号。
定子绕组的工作电压由位置传感器输出控制的电子开关电路提供。
参考资料:电动机电机-网络
G. 电动车电机内部结构图是什么样子
有刷电机无刷电机。
磁钢的种类他有很多种,常见的有三种:铁氧体,铝镍钴,钕铁硼。作为稀土永磁材料,钕铁硼能够在有限的体积内释放较强的磁能积,使得直流电机小型化成为可能,故而电动车电机除最早有过铁氧体外基本都是钕铁硼的天下,这里的磁钢也就不再单独加以标识。磁钢是商品,既然是商品就有三六九等,那么磁钢标识怎么区分好坏?首先是牌号,磁钢牌号从高到低有EH,UH,SH,H,M,N这几个标准,对应耐温系数为200,180,150,120,100,80。,耐温系数越高越好,毕竟电机自身会发热,发热以后就会退磁影响电机寿命;在磁钢牌号前面一般还会跟一个数字,这个数字一般是35,38,40这几个为主,这些数字标识解释起来专业术语较强,大家只要知道数字越大,磁性越强这条基本准则就可以了。现在市面上的电机普遍采用的都是耐温100度的38M料磁钢,能用到标准的H料磁钢的少之又少。
H. 搞电动汽车永磁同步电机的大侠帮下忙吧,这个问题困扰我很久了,悬赏50
我来说两点:1、电机的额定功率:额定工作状态下轴端的机械输出功率;
2、额定电压、电流:均是绕组的线电压、线电流;
3、既然厂家说了240V是蓄电池电压,那么这里的功率因该理解为整个拖动系统的功率,包括了电机控制器的因素;
4、根据电机控制器采用的策略不同,若采用三相SPWM 调制,逆变器能输出的不失真最大正弦相电压幅值为Udc/2。若采用SVPWM 调制逆变器输出的不失真最大相电压幅值为三分之根号三Udc,那么显然对于SVPWM而言,电机侧得到的最大相电压幅值为138.6V。对于SPWM,电机侧的最大相电压幅值为120V。也就是说两种方式的直流电压利用率不同。当然上面说的只是相电压最发幅值,但是根据调制算法,相电压的幅值是可以控制的;
另外对于SVPWM而言,电机侧得到的相电压波形并非正弦,为近似正弦的马鞍波形。
5、对于变频调速系统而言,其额定功率、峰值功率并非根据电机侧的额定电压额定电流计算的,往往是根据变频器输入侧的额定电压电流决定的,所以这里额定功率=根号3*线电压*线电流*效率*功率因素不成立;
6、对于电动汽车而言,输入侧即是直流,这里的额定电压电流应该均是直流,额定功率240V*85A即可,85A有可能是峰值电流,故取峰值功率为20kW;
鉴于优良了动态特性,目前电动汽车领域主流的电机控制器均采用SVPWM,其相电压为马鞍波形,根据调制系数,其峰值是不固定的(一般为了提高直流电压利用率,一般采用最大值)
我以前是做变频器的,欢迎大家多多讨论
I. 电动汽车为什么要选用凸极式永磁同步电机
1、开关磁阻电机与异步电机比较,要在节能变频的场合下比较,在都需要变频驱动的情况下,开关磁阻电机秒杀异步电机,特别是满载、过载启动,异步电机就等烧机吧。
2、开关磁阻电机与永磁电机比较,要在大功率的情况下比较,永磁电机成本要贵30%至40%,永磁电机适合做3KW以下的伺服,国内用来做电动汽车那是在可以骗补贴和装逼的情况下适用。
3、转矩脉动是世界性难题,所有电机都有,开关磁阻电机转矩脉动最差,开关磁阻电机转矩脉动主要与电机有关,具体与什么有关,没有人会告诉你,因为这是技术秘密。电控国内与国外都已成熟,但国内与国外有差距,所以国外有成熟的应用,开关磁阻电机属于最新的电机技术,不会那么快进入国内,因为国内主要工业精神是仿造。做这一行的应该知道,德国那个破壁机电机,已在祖国的大江南北被无数次拆解仿造。
4、功率密度、效率不是开关磁阻电机的问题,开关磁阻电机的问题是转矩脉动,记住是转矩脉动。如果你还停留在看论文找答案,你还是初级水平,不等到开关磁阻电机成熟那天,你永远不会知道答案。
5、稀土、永磁电机、电动汽车、国防资源,这些利害关系,不作说明,留给大家好好研究。