油摩战速改装图片
Ⅰ 自制遥控飞机
怎样制作遥控飞机
0 购买发动机和设备。(花去经费的70%)
1 备齐工具。
2 了解模型内构(与真飞机相似,但简化好多)。
3 备齐和了解材料(花去经费10-20%)。
4 制图,我是用Autocad设计和输出。
5 制作和调试。
6 找玩过遥控模型带你试飞,因为那天你可能会兴奋的手打抖。
怎样制作遥控飞机
要分为几个部分:
1:遥控器部分.2.无线电发射接收部分.3控制电路部分.4.飞机的机械部分.
我对最后一个部分不熟,不过应该有买的吧.那个飞机的模型,你可以买一个,拿回来在它的基础上改装.
遥控器那边, 如果你的功能不多,可以用2262\2272这一对编码\解码芯片.至于无线电,有卖那种做好的发射\接收模块的,那个东西,自己做很麻烦,有时候又起不了振,不如就买个现成的.
把上面的东西连好后,就可以从2272输出信号了,用这个信号控制步进电机之类的,当然需要自己连个电路了.自己设计,不难.
机械技术其实非常简单,首先是材料得选定,要求是必须轻,而且有一定得强度,现在在小模型方面应用最多得是纳米材料,看上去有点像泡沫塑料,但是强度较大。
其次就是机械,简单得模型你需要两个马达,装在飞机机翼上,马达只需要控制转速就可以了。当两个马达都高速旋转时,带动螺旋桨使飞机升空。当转速较低或者停止时,飞机下降。当两侧马达转速不平衡时,飞机朝转速低得马达方向倾斜旋转,只要把马达得控制电路做好就ok。
只能简单的告诉你,飞机航模有分橡筋动力,内燃机动力,微型涡轮喷气式动力,电动动力.一架飞机航模由机身,机翼,尾翼,接受器,舵机,轮子.这是最基本的.比如说,一架内燃机动力的飞机,有内燃机5.0CC,$500.有舵机用于控制机襟即升降,尾翼即方向.还有油箱,一般600毫升的混合油(汽油+酒精+煤油),油管.接受器(越高级就越复杂),机身,机翼,记住机身是机翼的70%-80%的长度.如果是初学者,我推荐你用电动的既撞不烂,又便宜,又简单.时间有限我不说太多了,我也是一个飞机航模的初学者呀!有两架飞机,今年打算搞一架航空母舰,哈哈!
航模制作
真羡慕啊!
这不是钱的问题,需要不了多少钱的。
1.一个大型的流水工作台兼木工台。
2.一个专业点的制作台(包括钻床,小车床等)。
3.两个工具箱,考究点的话做一个工作墙。
4.可以的话辟出一小间油漆间。
5.可以的话建造一个小的水池。
6.电工制作台和相配套的工具。
7.设计兼写字台。
8.全方位的灯光照明。
9.整套测试设备(万用表,测速器等)。
10.各种小零件(这就要靠你平时的收集的)。
一一不能说齐,靠你自己的积累了。
航空模型的一般知识
一、什么叫航空模型
在国际航联制定的竞赛规则里明确规定“航空模型是一种重于空气的,有尺寸限制的,带有或不带有发动机的,不能载人的航空器,就叫航空模型。
其技术要求是:
最大飞行重量同燃料在内为五千克;
最大升力面积一百五十平方分米;
最大的翼载荷100克/平方分米;
活塞式发动机最大工作容积10亳升。
1、什么叫飞机模型
一般认为不能飞行的,以某种飞机的实际尺寸按一定比例制作的模型叫飞机模型。
2、什么叫模型飞机
一般称能在空中飞行的模型为模型飞机,叫航空模型。
二、模型飞机的组成
模型飞机一般与载人的飞机一样,主要由机翼、尾翼、机身、起落架和发动机五部分组成。
1、机翼———是模型飞机在飞行时产生升力的装置,并能保持模型飞机飞行时的横侧安定。
2、尾翼———包括水平尾翼和垂直尾翼两部分。水平尾翼可保持模型飞机飞行时的俯仰安定,垂直尾翼保持模型飞机飞行时的方向安定。水平尾翼上的升降舵能控制模型飞机的升降,垂直尾翼上的方向舵可控制模型飞机的飞行方向。
3、机身———将模型的各部分联结成一个整体的主干部分叫机身。同时机身内可以装载必要的控制机件,设备和燃料等。
4、起落架———供模型飞机起飞、着陆和停放的装置。前部一个起落架,后面两面三个起落架叫前三点式;前部两面三个起落架,后面一个起落架叫后三点式。
5、发动机———它是模型飞机产生飞行动力的装置。模型飞机常用的动 力装置有:橡筋束、活塞式发动机、喷气式发动机、电动机。
三、航空模型技术常用术语
1、翼展——机翼(尾翼)左右翼尖间的直线距离。(穿过机身部分也计算在内)。
2、机身全长——模型飞机最前端到最末端的直线距离。
3、重心——模型飞机各部分重力的合力作用点称为重心。
4、尾心臂——由重心到水平尾翼前缘四分之一弦长处的距离。
5、翼型——机翼或尾翼的横剖面形状。
6、前缘——翼型的最前端。
7、后缘——翼型的最后端。
8、翼弦——前后缘之间的连线。
9、展弦比——翼展与平均翼弦长度的比值。展弦比大说明机翼狭长。
飞翼式模型滑翔机的飞行原理
飞翼式弹射滑翔机由机翼、折叠绞链、复位钩兼弹射钩和复位橡筋组成。在机翼翼尖的后缘部分设有调整片(图一)。把两片机翼折起来合成一体,用一根橡筋用力一弹,它就直冲蓝天,不一会机翼展开,象一只大鸟一样飞翔起来,十分有趣,它飞行方便,容易调整,又十分安全。
飞翼就是没有水平尾翼的飞机。飞翼没有尾翼,怎么会飞呢?我们知道滑翔机是由机翼产生升力,由重力向前的分力提供给滑翔机前进速度(图二)。水平尾翼掌握平衡(图三),并使它具有良好的俯仰安定性。飞翼有机翼,也有重力,这与普通滑翔机一样,具有一定的前进速度,能产生升力,但是没有尾翼;怎样来保持平衡和安定呢?原来飞翼的重心都设在很前面,机翼产生的升力一方面用来克服重力,另一方面它产生一个低头力矩,而飞翼翼尖附近的调整片一般向上翘起,产生一个向下的力,这对重心来说是一个抬头力矩,使整架模型保持平衡(图四)。同时,调整片也起到保持飞翼俯仰安定性的作用,这样飞翼与常规飞机就一样了:它有向前的飞行速度、由机翼产生升力克服重力、由调整片来保持平衡和安全。
飞翼式弹射滑翔机的飞行方法是:右手持弹射棒,左手拿住合拢后的机翼翼尖部分,弹射橡筋挂在右侧的弹射钩上(即右侧复位钩),弹射方向垂直向上(图五),只要一松开左手,合拢的飞翼模型就像火箭一样射向天空……。这里一定要注意,用右手拿弹射棒时一定要使用右边的弹射钩,你如果使用左边的弹射钩,飞翼就会弹到弹射棒上(图六),甚至会弹到右手。
飞翼滑翔姿态依靠调整调整片的角度,调整方法与普通的模型相仿:如果模型向下坠,也就是头重,那么可以把调整片向上扳一些,增加上翘的角度;如果模型产生波状飞行或失速,也就是头轻,那么把调整片向下扳一些,即减小调整片向上的角度,同学们可以在反复的飞行中调整,取得一个最佳的角度。
调整时,还应注意飞翼的上反角不宜过大,因为上反角是用来保持模型的横侧安定性的,而飞翼的后掠角也可以起到上反角的作用,因此上反角不宜过大。试飞时如果滑翔机左右摇晃,就是上反角太大了,可以减小一些。
飞翼式弹射滑翔机高速上升时,依靠迎面而来的强大空气动力,使两片机翼紧紧合在一起,当速度减小时,空气动力也减小,空气对机翼的压力小于复位橡筋的张力时,飞翼的两片机翼就自然张开,进入滑翔。如果复位橡筋的力量很大,飞翼就弹不高,适当调整复位橡筋的力量,可以使你的模型弹得更高,但是一定要保证机翼能平稳展开。
如果你把机翼的后掠角适当地增加一些(图七),可以使你的小飞机飞得更稳定。因为后掠角略为增大一些,可以使翼尖更向后伸展,这样有利于飞翼的安定性。
航空模型的分类
一、普及级航空模型的分类和分级(竞赛项目)
一、自由飞行类(P1类)
P1A——牵引模型滑翔机(分P1A-1、P1A-2两级)
P1B——橡筋模型滑翔机(分P1B-1、P1B-2两级)
P1C——活塞式发动机模型滑翔机(分P1C-1、P1C-2两级)
P1D——室内模型飞机(分P1D-1、P1D-2两级)
P1E——电动模型飞机
P1F——橡筋模型直升飞机
P1S——手掷模型滑翔机(分留空时间和直线距离)
P1T——弹射模型滑翔机。
二、线操纵类(P2类)
P2B——线操纵特技模型飞机(分P2B-1、P2B-2两级)
P2C——线操纵小组竞速模型飞机
P2D——线操纵空战模型飞机
P2E——线操纵电动特技模型飞机(分P2E-1、P2E-2两级)
P2X——线操纵橡筋模型飞机
三、无线电遥控类(P3类)
P3A——无线电遥控特技模型飞机(分P3A-1、P3A-2两级)
P3B——无线电遥控模型滑翔机(分P3B-1、P3B-2两级)
P3E——无线电遥控电动模型飞机。
二、在青少年中广泛开展的航空模型项目
一、纸模型飞机
二、手掷模型滑翔机(简称:手掷,编号为P1S)
三、橡筋模型直升飞机
四、弹射模型滑翔机(简称:弹射,编号为P1T)
五、牵引模型滑翔机(简称:牵引,普及级编号为P1A-1和P1A-2,国际级编号为F1A)
六、橡筋模型飞机(简称:橡筋,普及级编号为P1B-1和P1B-2,国际级为F1B
飞机模型翼型
常用的模型飞机翼型有对称、双凸、平凸、凹凸,s形等几种,如图所示
对称翼型的中弧线和翼弦重合,上弧线和下弧线对称。这种翼型阻力系数比较小,但升阻比也小。一般用在线操纵或遥控特技模型飞机上
双凸翼型的上弧线和下弧线都向外凸,但上弧线的弯度比下弧线大。这种翼型比对称翼型的升阻比大。一般用在线操纵竞速或遥控特技模型飞机上
平凸翼型的下弧线是一条直线。这种翼型最大升阻比要比双凸翼型大。一般用在速摩不太高的初级线操纵或遥控模型飞机上
凹凸翼型的下弧线向内凹入。这种翼型能产生较大的升力,升阻比也比较大。广泛用在竞赛留空时间的模型飞机上
S形翼型的中弧线象横放的S形。这种翼型的力矩特性是稳定的,可以用在没有水平尾翼的模型飞机上
机翼升力原理
如果两手各拿一张薄纸,使它们之间的距离大约4~6厘米。然后用嘴向这两张纸中间吹气,如图所示。你会看到,这两张纸不但没有分开,反而相互靠近了,而且用最吹出的气体速度越大,两张纸就越靠近。从这个现象可以看出,当两纸中间有空气流过时,压强变小了,纸外压强比纸内大,内外的压强差就把两纸往中间压去。中间空气流动的速度越快,纸内外的压强差也就越大。
飞机机翼地翼剖面又叫做翼型,一般翼型的前端圆钝、后端尖锐,上表面拱起、下表面较平,呈鱼侧形。前端点叫做前缘,后端点叫做后缘,两点之间的连线叫做翼弦。当气流迎面流过机翼时,流线分布情况如图2。原来是一股气流,由于机翼地插入,被分成上下两股。通过机翼后,在后缘又重合成一股。由于机翼上表面拱起,是上方的那股气流的通道变窄。根据气流的连续性原理和伯努利定理可以得知,机翼上方的压强比机翼下方的压强小,也就是说,机翼下表面受到向上的压力比机翼上表面受到向下的压力要大,这个压力差就是机翼产生的升力。
使用要领和有关常识
(一)小发动机的使用要领:使用小发动机要注意以下几个方面:
1.磨合运转——凡是新发动机,必须先以较低的转速运转一个阶段,时间从半小时到一小时以至更多些,称为磨合运转(磨车)。磨合运转很重要,磨合运转不好,发动机不但寿命短、马力小、难以起动,还会带来很多故障。说磨车没有用,是白白损耗发动机等认识都是片面的。正确的磨合运转决不会缩短发动机的寿命,相反会延长寿命与改进性能。即以新汽车和摩托车等为例,出厂时汽化器上装有限制转速的堵头,或是规定车速不得超过某个限度,要行驶几百公里后才可逐步地提高车速,这也就是为了磨合各个机件。
为什么要磨车呢?
因为每台小发动机都是由若干零件装成的,这些零件的相互配合还没有完全协调,各个摩擦表面更免不了有高低不平或毛刺的地方。如在这时就以高速工作,活塞和气缸等零件就会产生过热甚至卡死,造成表面拉毛等损伤。磨合运转就是以较慢的速度运转,慢慢地、一点一滴地将那些互相接触的零件表面都“磨”得很光滑,能互相适应和协调配合。这好比我们刚穿上一双新鞋时会感到有点不舒服一样,如果硬要在这时候跑步的话,脚就会不适应;如果穿了几天以后再跑步,脚就会觉得“顺”多了。
磨车必须在结实的试车台或桌子上进行,决不能装在模型飞机上或其他不够结实的板上进行,以免在运转时引起振动,使机件受损。
磨车要用较大的螺旋桨来限制发动机的转速,一般维持在5000~6000转/分左右,然后逐步提高转速。转速过低会产生较大的振动,对零件不利。最好是稳定均匀的中等转速。磨车期间,不要使用有附加剂的油料,油门要开大些,不要将调压杆压得太紧。
一般磨车步骤如下:
刚磨车时,应在发动机运转1~2分钟后就迅速关断油路停车,待发动机稍稍冷却后再开车,不要连续运转很长时间。这样做,也有利于熟悉这台发动机的起动和调整。而后,先低速运转20~30分钟,如果气缸头不太烫手(手指按上1~2秒钟也能忍受),转速均匀,就可以稍稍压紧调压杆,关小一点油针,提高一点转速。继续磨车20分钟左右。再换上较小的螺旋桨,逐步提高转速。最后用放飞模型的螺旋桨,高速磨车10~20分钟。
新发动机刚磨车时,排气口有黑色油点喷出。如将手指伸近排气口,即会喷上一层油,在阳光下可从油层中看到闪闪发光的金属粉末。一般磨车半小时左右,喷出的黑油即大大减少或消除。这时应逐步提高转速,如转速一直稳定,也无“热死”现象,磨车即告结束,可以将发动机装在模型飞机上使用。每台发动机需要磨车的时间不全相同,要根据具体情况来决定。一般约一小时左右。
经过正确磨车的小发动机,具有良好的气密性,容易起动,转动时轻松灵活,即使连续高速运转,转速也不改变(可从声音来判断)。
2.安装——压燃式小发动机可以用作航空、航海和陆上模型的动力装置。当用在模型飞机上时,它可以装在机头前方(拉进式),即是一般最普通的式样;也可以
装在机尾等部位(推进式),这时必须使后桨垫和机匣前端面间的距离小于曲柄销和机匣后盖间的距离,以便螺旋桨的推力通过后桨垫传到机匣端面,不使曲柄销和后盖产生摩擦。
小发动机可以正装(气缸头在上)、倒装(气缸头在下)和横装(气缸头朝向侧面)。最普通的是正装和横装。倒装起动较难,容易引起油多。在线操纵模型上,尤其是线操纵特技模型上,为了保护发动机,经常采用横装。横装的发动机仍能很好起动。
图13是小发动机在模型飞机上横装时的起动方法。助手蹲在模型的右侧稍靠后,左手紧抓靠近发动机的机身部分(主要是抓住,不是使劲将模型往地面压,以免压弯起落架或使螺旋桨打地),右手轻轻扶住右翼尖;起动者右手拨桨,左手捏住调压杆,以便根据右手感到的力量大小,随时调节压缩比。熟练后也可一人起动,用左手抓模型,右手拨桨。
小发动机一定要结实可靠地装在模型的发动机架上;每次飞行后必须检查,有松动时立即拧紧。装得不牢靠的发动机,开动后会引起剧烈振动,使模型无法飞好。
调整装在模型上的发动机时,不能只顾地面运转情况,必须考虑飞行的条件和要求。例如,线操纵特技模型飞机有垂直上升、俯冲和倒飞等动作,发动机起动后应将模型飞机先后放在抬头、低头、平飞和倒飞等状态去调整发动机,使抬头时马力最大,低头时稍稍富油。其他状态下都能正常工作不停车。
小发动机在实际应用中,还会产生这样那样的问题,要善于分析,找出原因,注意通过实践,总结经验。
3.平时维护:
(1)经常保持发动机的内外清洁,决不要让尘土、灰沙、纸木屑或其他脏物进入内部。发动机不用的时候,要用清洁的布或纸包好。每次使用或放飞后,要用清洁的废纸或布将发动机外面的脏物擦净并包好;同时用带点汽油或煤油的布将模型飞机上的油擦去,再用干布擦净。不要在尘土很大或沙土地上开车或起飞;迫不得已需在沙土地上起飞时,应先泼些水或垫些厚纸和木板,以防沙土进入发动机。做模型飞机时,往往需用发动机测量位置和尺寸,应将发动机的进、排气口包好,防止纸木屑等脏物进入。
(2)爱护发动机。非必要时,不要连续用高转速开车,或用过份短小的螺旋桨和飞轮开车。不要将调压杆压得过紧。
(3)尽可能不拆或少拆发动机。
(4)要选用恰当的工具、合适的螺旋桨、成份正确和洁净的油料。
(5)与发动机经常接触的注油用具、工具和模型飞机等要保持清洁。应准备一只干净的小盒专门盛放注油用具,不要将注油用具随地乱放,以免灰土随着注油进入发动机。灰土象研磨剂一样,会很快磨坏发动机。最好将注油用具盒、油瓶和扳手等放在专门准备的布包或小木箱内。既便利使用,又保证清洁,更可避免外出放飞时忘带某种必需的工具。
4.注意安全——航模发动机虽然很小,但转速很高。因此,要注意安全,防止事故。
起动后,不要站在螺旋桨的旋转面内。不能使用已经破裂或断去一段和不平衡的螺旋桨,断裂的螺旋桨决不能胶上再使用。绝对不要使用金属做的螺旋桨。
存放油料时,不可靠近高温或有火种的地方。配制混合油和用汽油清洗发动机时,绝对不能抽烟,并防止抽烟人接近。不要在室内开发动机,尽可能避免吸入乙醚和废气。混合油瓶外面需注明有毒,以免误用。
二)有关小发动机的常识:
我们已经懂得了一些内燃机的工作原理,初步掌握了航模内燃机的起动和使用,大家一定希望知道更多的有关内燃机的知识。那么究竟有那些因素影响内燃机的性能呢?怎样才能更好地利用和发挥手中这台航模发动机的作用呢?下面就来介绍一些有关这方面的常识:
1.分气定时图——小发动机的进气、转气和排气的开始和终止时间叫做分气定时。分气定时对发动机的功率、转速、耗油率和起动性能等都有着很重要的影响。要合理选择分气定时,充分利用气体流动时产生的惯性,以便尽可能地将废气驱除干净,吸进更多的新鲜混合气,提高发动机的功率。分气定时图用来表示进气、转气及排气的时间和先后次序,从图上可以看出某个过程在何时开始、何时终止,以及开放延续时间的长短。在定时图上,各个气门的开闭时间都用曲轴旋转的角度来表示。
图14右方是曲轴式进气小发动机(如银燕1.5)的分气定时图。从图14左方曲柄销(曲轴后端装有连杆的一段圆销)的旋转运动来看,当活塞下降到排气口时,排气开始,曲柄销的位置相当于定时图上的“1”;曲柄销转到“2”时,转气口打开了,转气开始;活塞经过下止点后开始上升,曲柄销转到相当于“3”的位置时,转气终止;到“4”时,排气终止;活塞继续上升,曲柄销转到相当于“5”的位置时,曲轴上的进气孔与进气管接通,进气开始;活塞经过上止点后,转为下降,到“6”时,曲轴上的进气孔与进气管不再相通,进气终止。
2.负荷特性曲线——发动机工作时,用来转动螺旋桨的功率叫发动机有效功率,简称发动机功率。发动机功率是衡量小发动机性能的一个重要标准。当发动机在地面以不变的最大容许进气压力进行工作(不以任何物体堵住进气管口而增加进气阻力)时,可利用改变曲轴负荷的方法(如采用大小不同的螺旋桨)来改变转速。随着转速的改变,发动机的有效功率也发生变化。有效功率与转速的变化关系叫发动机的负荷特性。用来表示发动机有效功率(马力)随着曲轴转速(每分钟转数)高低而变化的曲线叫发动机负荷特性曲线,或称外部特性曲线和功率转速曲线。根据这根曲线,可查出某一转速时发动机的功率。例如,在图15的曲线上,当这台发动机的转速为7000转/分时,它的功率是0.135匹马力左右;10000转/分左右,功率最大,这时的转速称为最大功率转速;转速再增高,功率反而下降。不同型号的发动机,其功率转速曲线也不同。
由此看来,如要发挥某台发动机的最大功率,那就要选择适当尺寸的螺旋桨,使发动机在飞行中的转速,恰好在最大功率转速附近。飞行中,发动机的转速一般要比地面高10%左右。有些小发动机的说明书,附有功率转速曲线图,可供参考。
3.测定转速——上面说过,如能知道发动机的转速,就可根据发动机的功率转速曲线来推求功率。即使没有功率转速曲线,也可从转速上大致地估计出功率的大小来。因为一般普及用压燃式小发动机的最大功率转速约在10000~14000转/分之间,知道转速就可大约估计该发动机的最大功率是否发挥了。
测定转速可用测量范围在20000转/分左右的离心式或闪光式转速计来进行。也可自制一个简单实用的振动式转速计,它是根据物理学上共振原理制成的,测速时并且不会消耗发动机的功率。
振动式转速计由十几根不同长度的钢丝做成(图16)。每根钢丝的自振频率都不同,钢丝越长,自振频率越低;长度越短,自振频率越高。小发动机工作时,每转一转,活塞上下一次,产生一次振动。当发动机产生的振动频率和某根钢丝的自振频率相同或成整数的倍数时,这根钢丝就会因共振而开始振动。使用时,将振动式转速计固定在发动机附近,或直接用底座靠在发动机的气缸头等部位上;只要观察那一根钢丝的振动幅度最大,就可根据该钢丝的刻度测得发动机的转速。其准确度依钢丝质量、直径大小及钢丝和底座的夹紧程度不同而略有出入,一般为±200转/分。最好先用标准转速表校准刻度。
钢丝的自振频率和它的直径、自由长度及钢材的弹性有关。一般钢丝的自振频率f可按下式计算:
其中:d 钢丝直径(单位厘米)
L 钢丝自由长度(单位厘米)
或其中:n 发动机转速(单位转/分)
利用上式,可以求出不同直径的钢丝在代表某一转速而产生共振时所需要的自由长度。
转/分
自由长度
毫米
转/分
自由长度
毫米
自由长度
毫米
3000
3500
4000
4500
5000
5500
6000
117
110
103
98
94
90
86
6500
7000
7500
8000
8500
9000
9500
82.5
79
76.3
74
71.5
69.5
67.8
10000
10500
11000
11500
12000
12500
13000
66
64.5
63
61.5
60
59
58
如用直径1毫米的钢丝,其代表各种转速的自由长度(露在底座外面的钢丝长度)见上表。
这种转速计也可用金属片做底座(图17、18)。靠近钢丝根部的底座上写有代表转速的刻度。为了缩小体积,可少用几根钢丝。还可采用活动铅笔式的构造,以便携带。在装铅芯的位置上有一根可以伸缩的钢丝,测转速时拿转速计的一端靠上气缸头,将钢丝伸长或缩短,看钢丝在那个位置振动最剧烈,据此相应刻度便能知道发动机的转速。
4.选用螺旋桨——练习起动航模小发动机时,需要螺旋桨。首先,拨桨起动需要螺旋桨;此外,螺旋桨具有使小发动机连续工作的飞轮作用和冷却作用。
供练习起动和磨车用的螺旋桨,可以比放飞的螺旋桨大些和厚些。较重的螺旋桨有利于起动和运转的稳定。如用在1.5毫升的发动机上,螺旋桨直径约为240毫米,螺距约为120毫米;用在2.5毫升发动机上,螺旋桨直径约为260毫米,螺距约为130毫米。
应选择质地细洁坚实、不易开裂、强度较好又易加工的木材做螺旋桨。较合适的有松木和椴木等。桦木也很合适,就是稍硬些,加工时费点力。桐木太软,强度又差,不能选用。
桨叶的断面一般应呈平凸翼型状,前缘较圆,后缘较薄;桨根部要厚实些,以保证强度,根部断面呈双凸形。练习起动时,由于手指反复拨动,往往会被桨叶后缘磨痛或使后缘开裂。因此,要将练习起动用螺旋桨的后缘做得厚些、圆滑些。
制作螺旋桨的弧面时,用木锉加工比用刀子好,只是加工后的表面毛糙些,这可用粗钢锉或砂纸多打磨几下。完工后的螺旋桨要仔细检查平衡。要求两边桨叶的长短、外形、重量和对应断面的桨叶角等都一样,特别是两边桨叶的重量要一样。不平衡的螺旋桨,在发动机起动后会引起剧烈振动,以致造成停车、松动和磨坏轴承等零件的情况。桨叶表面要涂三至五遍透布油(也可用油漆或喷漆代替),防止发动机燃料渗入木材,影响平衡。
决不能使用金属螺旋桨,以防把手打坏。气冷式新发动机不能用飞轮开车,那会因冷却不好而使零件损坏。
图19是螺旋桨的制作步骤,最下方是完工后的形状。图20是供参考用的桨叶样板(直径230毫米)。
飞机螺旋桨工作原理
一、工作原理
可以把螺旋桨看成是一个一面旋转一面前进的机翼进行讨论。流经桨叶各剖面的气流由沿旋转轴方向的前进速度和旋转产生的切线速度合成。在螺旋桨半径r1和r2(r1<r2)两处各取极小一段,讨论桨叶上的气流情况。V—轴向速度;n—螺旋桨转速;φ—气流角,即气流与螺旋桨旋转平面夹角;α—桨叶剖面迎角;β—桨叶角,即桨叶剖面弦线与旋转平面夹角。显而易见β=α+φ。空气流过桨叶各小段时产生气动力,阻力ΔD和升力ΔL,合成后总空
参考资料:感谢网络以及相关网站
Ⅱ 摩力觉醒 焕然新生 WEY摩卡领智上市售价17.58万起
5月21日,“摩力觉醒 焕然新生”WEY摩卡上市发布会于北京举办,新一代智能汽车人WEY摩卡领智上市,凭借“高智商”的高阶自动驾驶能力、“高情商”的智能服务,以及17.58万元——21.88万元的诚意售价,WEY摩卡将开启智能出行的WEY时代,这不仅印证了WEY品牌领先的智能科技实力及以用户为中心的品牌理念,更让中国汽车拥有了与世界豪华品牌一较高下的底气。
Ⅲ 摇控飞机模型的制作
怎样制作遥控飞机 0 购买发动机和设备。(花去经费的70%) 1 备齐工具。 2 了解模型内构(与真飞机相似,但简化好多)。 3 备齐和了解材料(花去经费10-20%)。 4 制图,我是用Autocad设计和输出。 5 制作和调试。 6 找玩过遥控模型带你试飞,因为那天你可能会兴奋的手打抖。 怎样制作遥控飞机 要分为几个部分: 1:遥控器部分.2.无线电发射接收部分.3控制电路部分.4.飞机的机械部分. 我对最后一个部分不熟,不过应该有买的吧.那个飞机的模型,你可以买一个,拿回来在它的基础上改装. 遥控器那边, 如果你的功能不多,可以用2262\2272这一对编码\解码芯片.至于无线电,有卖那种做好的发射\接收模块的,那个东西,自己做很麻烦,有时候又起不了振,不如就买个现成的. 把上面的东西连好后,就可以从2272输出信号了,用这个信号控制步进电机之类的,当然需要自己连个电路了.自己设计,不难. 机械技术其实非常简单,首先是材料得选定,要求是必须轻,而且有一定得强度,现在在小模型方面应用最多得是纳米材料,看上去有点像泡沫塑料,但是强度较大。 其次就是机械,简单得模型你需要两个马达,装在飞机机翼上,马达只需要控制转速就可以了。当两个马达都高速旋转时,带动螺旋桨使飞机升空。当转速较低或者停止时,飞机下降。当两侧马达转速不平衡时,飞机朝转速低得马达方向倾斜旋转,只要把马达得控制电路做好就ok。 只能简单的告诉你,飞机航模有分橡筋动力,内燃机动力,微型涡轮喷气式动力,电动动力.一架飞机航模由机身,机翼,尾翼,接受器,舵机,轮子.这是最基本的.比如说,一架内燃机动力的飞机,有内燃机5.0CC,$500.有舵机用于控制机襟即升降,尾翼即方向.还有油箱,一般600毫升的混合油(汽油+酒精+煤油),油管.接受器(越高级就越复杂),机身,机翼,记住机身是机翼的70%-80%的长度.如果是初学者,我推荐你用电动的既撞不烂,又便宜,又简单.时间有限我不说太多了,我也是一个飞机航模的初学者呀!有两架飞机,今年打算搞一架航空母舰,哈哈! 航模制作 真羡慕啊! 这不是钱的问题,需要不了多少钱的。 1.一个大型的流水工作台兼木工台。 2.一个专业点的制作台(包括钻床,小车床等)。 3.两个工具箱,考究点的话做一个工作墙。 4.可以的话辟出一小间油漆间。 5.可以的话建造一个小的水池。 6.电工制作台和相配套的工具。 7.设计兼写字台。 8.全方位的灯光照明。 9.整套测试设备(万用表,测速器等)。 10.各种小零件(这就要靠你平时的收集的)。 一一不能说齐,靠你自己的积累了。 航空模型的一般知识 一、什么叫航空模型 在国际航联制定的竞赛规则里明确规定“航空模型是一种重于空气的,有尺寸限制的,带有或不带有发动机的,不能载人的航空器,就叫航空模型。 其技术要求是: 最大飞行重量同燃料在内为五千克; 最大升力面积一百五十平方分米; 最大的翼载荷100克/平方分米; 活塞式发动机最大工作容积10亳升。 1、什么叫飞机模型 一般认为不能飞行的,以某种飞机的实际尺寸按一定比例制作的模型叫飞机模型。 2、什么叫模型飞机 一般称能在空中飞行的模型为模型飞机,叫航空模型。 二、模型飞机的组成 模型飞机一般与载人的飞机一样,主要由机翼、尾翼、机身、起落架和发动机五部分组成。 1、机翼———是模型飞机在飞行时产生升力的装置,并能保持模型飞机飞行时的横侧安定。 2、尾翼———包括水平尾翼和垂直尾翼两部分。水平尾翼可保持模型飞机飞行时的俯仰安定,垂直尾翼保持模型飞机飞行时的方向安定。水平尾翼上的升降舵能控制模型飞机的升降,垂直尾翼上的方向舵可控制模型飞机的飞行方向。 3、机身———将模型的各部分联结成一个整体的主干部分叫机身。同时机身内可以装载必要的控制机件,设备和燃料等。 4、起落架———供模型飞机起飞、着陆和停放的装置。前部一个起落架,后面两面三个起落架叫前三点式;前部两面三个起落架,后面一个起落架叫后三点式。 5、发动机———它是模型飞机产生飞行动力的装置。模型飞机常用的动 力装置有:橡筋束、活塞式发动机、喷气式发动机、电动机。 三、航空模型技术常用术语 1、翼展——机翼(尾翼)左右翼尖间的直线距离。(穿过机身部分也计算在内)。 2、机身全长——模型飞机最前端到最末端的直线距离。 3、重心——模型飞机各部分重力的合力作用点称为重心。 4、尾心臂——由重心到水平尾翼前缘四分之一弦长处的距离。 5、翼型——机翼或尾翼的横剖面形状。 6、前缘——翼型的最前端。 7、后缘——翼型的最后端。 8、翼弦——前后缘之间的连线。 9、展弦比——翼展与平均翼弦长度的比值。展弦比大说明机翼狭长。 飞翼式模型滑翔机的飞行原理 飞翼式弹射滑翔机由机翼、折叠绞链、复位钩兼弹射钩和复位橡筋组成。在机翼翼尖的后缘部分设有调整片(图一)。把两片机翼折起来合成一体,用一根橡筋用力一弹,它就直冲蓝天,不一会机翼展开,象一只大鸟一样飞翔起来,十分有趣,它飞行方便,容易调整,又十分安全。 飞翼就是没有水平尾翼的飞机。飞翼没有尾翼,怎么会飞呢?我们知道滑翔机是由机翼产生升力,由重力向前的分力提供给滑翔机前进速度(图二)。水平尾翼掌握平衡(图三),并使它具有良好的俯仰安定性。飞翼有机翼,也有重力,这与普通滑翔机一样,具有一定的前进速度,能产生升力,但是没有尾翼;怎样来保持平衡和安定呢?原来飞翼的重心都设在很前面,机翼产生的升力一方面用来克服重力,另一方面它产生一个低头力矩,而飞翼翼尖附近的调整片一般向上翘起,产生一个向下的力,这对重心来说是一个抬头力矩,使整架模型保持平衡(图四)。同时,调整片也起到保持飞翼俯仰安定性的作用,这样飞翼与常规飞机就一样了:它有向前的飞行速度、由机翼产生升力克服重力、由调整片来保持平衡和安全。 飞翼式弹射滑翔机的飞行方法是:右手持弹射棒,左手拿住合拢后的机翼翼尖部分,弹射橡筋挂在右侧的弹射钩上(即右侧复位钩),弹射方向垂直向上(图五),只要一松开左手,合拢的飞翼模型就像火箭一样射向天空……。这里一定要注意,用右手拿弹射棒时一定要使用右边的弹射钩,你如果使用左边的弹射钩,飞翼就会弹到弹射棒上(图六),甚至会弹到右手。 飞翼滑翔姿态依靠调整调整片的角度,调整方法与普通的模型相仿:如果模型向下坠,也就是头重,那么可以把调整片向上扳一些,增加上翘的角度;如果模型产生波状飞行或失速,也就是头轻,那么把调整片向下扳一些,即减小调整片向上的角度,同学们可以在反复的飞行中调整,取得一个最佳的角度。 调整时,还应注意飞翼的上反角不宜过大,因为上反角是用来保持模型的横侧安定性的,而飞翼的后掠角也可以起到上反角的作用,因此上反角不宜过大。试飞时如果滑翔机左右摇晃,就是上反角太大了,可以减小一些。 飞翼式弹射滑翔机高速上升时,依靠迎面而来的强大空气动力,使两片机翼紧紧合在一起,当速度减小时,空气动力也减小,空气对机翼的压力小于复位橡筋的张力时,飞翼的两片机翼就自然张开,进入滑翔。如果复位橡筋的力量很大,飞翼就弹不高,适当调整复位橡筋的力量,可以使你的模型弹得更高,但是一定要保证机翼能平稳展开。 如果你把机翼的后掠角适当地增加一些(图七),可以使你的小飞机飞得更稳定。因为后掠角略为增大一些,可以使翼尖更向后伸展,这样有利于飞翼的安定性。 航空模型的分类 一、普及级航空模型的分类和分级(竞赛项目) 一、自由飞行类(P1类) P1A——牵引模型滑翔机(分P1A-1、P1A-2两级) P1B——橡筋模型滑翔机(分P1B-1、P1B-2两级) P1C——活塞式发动机模型滑翔机(分P1C-1、P1C-2两级) P1D——室内模型飞机(分P1D-1、P1D-2两级) P1E——电动模型飞机 P1F——橡筋模型直升飞机 P1S——手掷模型滑翔机(分留空时间和直线距离) P1T——弹射模型滑翔机。 二、线操纵类(P2类) P2B——线操纵特技模型飞机(分P2B-1、P2B-2两级) P2C——线操纵小组竞速模型飞机 P2D——线操纵空战模型飞机 P2E——线操纵电动特技模型飞机(分P2E-1、P2E-2两级) P2X——线操纵橡筋模型飞机 三、无线电遥控类(P3类) P3A——无线电遥控特技模型飞机(分P3A-1、P3A-2两级) P3B——无线电遥控模型滑翔机(分P3B-1、P3B-2两级) P3E——无线电遥控电动模型飞机。 二、在青少年中广泛开展的航空模型项目 一、纸模型飞机 二、手掷模型滑翔机(简称:手掷,编号为P1S) 三、橡筋模型直升飞机 四、弹射模型滑翔机(简称:弹射,编号为P1T) 五、牵引模型滑翔机(简称:牵引,普及级编号为P1A-1和P1A-2,国际级编号为F1A) 六、橡筋模型飞机(简称:橡筋,普及级编号为P1B-1和P1B-2,国际级为F1B 飞机模型翼型 常用的模型飞机翼型有对称、双凸、平凸、凹凸,s形等几种,如图所示 对称翼型的中弧线和翼弦重合,上弧线和下弧线对称。这种翼型阻力系数比较小,但升阻比也小。一般用在线操纵或遥控特技模型飞机上 双凸翼型的上弧线和下弧线都向外凸,但上弧线的弯度比下弧线大。这种翼型比对称翼型的升阻比大。一般用在线操纵竞速或遥控特技模型飞机上 平凸翼型的下弧线是一条直线。这种翼型最大升阻比要比双凸翼型大。一般用在速摩不太高的初级线操纵或遥控模型飞机上 凹凸翼型的下弧线向内凹入。这种翼型能产生较大的升力,升阻比也比较大。广泛用在竞赛留空时间的模型飞机上 S形翼型的中弧线象横放的S形。这种翼型的力矩特性是稳定的,可以用在没有水平尾翼的模型飞机上 机翼升力原理 如果两手各拿一张薄纸,使它们之间的距离大约4~6厘米。然后用嘴向这两张纸中间吹气,如图所示。你会看到,这两张纸不但没有分开,反而相互靠近了,而且用最吹出的气体速度越大,两张纸就越靠近。从这个现象可以看出,当两纸中间有空气流过时,压强变小了,纸外压强比纸内大,内外的压强差就把两纸往中间压去。中间空气流动的速度越快,纸内外的压强差也就越大。 飞机机翼地翼剖面又叫做翼型,一般翼型的前端圆钝、后端尖锐,上表面拱起、下表面较平,呈鱼侧形。前端点叫做前缘,后端点叫做后缘,两点之间的连线叫做翼弦。当气流迎面流过机翼时,流线分布情况如图2。原来是一股气流,由于机翼地插入,被分成上下两股。通过机翼后,在后缘又重合成一股。由于机翼上表面拱起,是上方的那股气流的通道变窄。根据气流的连续性原理和伯努利定理可以得知,机翼上方的压强比机翼下方的压强小,也就是说,机翼下表面受到向上的压力比机翼上表面受到向下的压力要大,这个压力差就是机翼产生的升力。 使用要领和有关常识 (一)小发动机的使用要领:使用小发动机要注意以下几个方面: 1.磨合运转——凡是新发动机,必须先以较低的转速运转一个阶段,时间从半小时到一小时以至更多些,称为磨合运转(磨车)。磨合运转很重要,磨合运转不好,发动机不但寿命短、马力小、难以起动,还会带来很多故障。说磨车没有用,是白白损耗发动机等认识都是片面的。正确的磨合运转决不会缩短发动机的寿命,相反会延长寿命与改进性能。即以新汽车和摩托车等为例,出厂时汽化器上装有限制转速的堵头,或是规定车速不得超过某个限度,要行驶几百公里后才可逐步地提高车速,这也就是为了磨合各个机件。 为什么要磨车呢? 因为每台小发动机都是由若干零件装成的,这些零件的相互配合还没有完全协调,各个摩擦表面更免不了有高低不平或毛刺的地方。如在这时就以高速工作,活塞和气缸等零件就会产生过热甚至卡死,造成表面拉毛等损伤。磨合运转就是以较慢的速度运转,慢慢地、一点一滴地将那些互相接触的零件表面都“磨”得很光滑,能互相适应和协调配合。这好比我们刚穿上一双新鞋时会感到有点不舒服一样,如果硬要在这时候跑步的话,脚就会不适应;如果穿了几天以后再跑步,脚就会觉得“顺”多了。 磨车必须在结实的试车台或桌子上进行,决不能装在模型飞机上或其他不够结实的板上进行,以免在运转时引起振动,使机件受损。 磨车要用较大的螺旋桨来限制发动机的转速,一般维持在5000~6000转/分左右,然后逐步提高转速。转速过低会产生较大的振动,对零件不利。最好是稳定均匀的中等转速。磨车期间,不要使用有附加剂的油料,油门要开大些,不要将调压杆压得太紧。 一般磨车步骤如下: 刚磨车时,应在发动机运转1~2分钟后就迅速关断油路停车,待发动机稍稍冷却后再开车,不要连续运转很长时间。这样做,也有利于熟悉这台发动机的起动和调整。而后,先低速运转20~30分钟,如果气缸头不太烫手(手指按上1~2秒钟也能忍受),转速均匀,就可以稍稍压紧调压杆,关小一点油针,提高一点转速。继续磨车20分钟左右。再换上较小的螺旋桨,逐步提高转速。最后用放飞模型的螺旋桨,高速磨车10~20分钟。 新发动机刚磨车时,排气口有黑色油点喷出。如将手指伸近排气口,即会喷上一层油,在阳光下可从油层中看到闪闪发光的金属粉末。一般磨车半小时左右,喷出的黑油即大大减少或消除。这时应逐步提高转速,如转速一直稳定,也无“热死”现象,磨车即告结束,可以将发动机装在模型飞机上使用。每台发动机需要磨车的时间不全相同,要根据具体情况来决定。一般约一小时左右。 经过正确磨车的小发动机,具有良好的气密性,容易起动,转动时轻松灵活,即使连续高速运转,转速也不改变(可从声音来判断)。 2.安装——压燃式小发动机可以用作航空、航海和陆上模型的动力装置。当用在模型飞机上时,它可以装在机头前方(拉进式),即是一般最普通的式样;也可以 装在机尾等部位(推进式),这时必须使后桨垫和机匣前端面间的距离小于曲柄销和机匣后盖间的距离,以便螺旋桨的推力通过后桨垫传到机匣端面,不使曲柄销和后盖产生摩擦。 小发动机可以正装(气缸头在上)、倒装(气缸头在下)和横装(气缸头朝向侧面)。最普通的是正装和横装。倒装起动较难,容易引起油多。在线操纵模型上,尤其是线操纵特技模型上,为了保护发动机,经常采用横装。横装的发动机仍能很好起动。 图13是小发动机在模型飞机上横装时的起动方法。助手蹲在模型的右侧稍靠后,左手紧抓靠近发动机的机身部分(主要是抓住,不是使劲将模型往地面压,以免压弯起落架或使螺旋桨打地),右手轻轻扶住右翼尖;起动者右手拨桨,左手捏住调压杆,以便根据右手感到的力量大小,随时调节压缩比。熟练后也可一人起动,用左手抓模型,右手拨桨。 小发动机一定要结实可靠地装在模型的发动机架上;每次飞行后必须检查,有松动时立即拧紧。装得不牢靠的发动机,开动后会引起剧烈振动,使模型无法飞好。 调整装在模型上的发动机时,不能只顾地面运转情况,必须考虑飞行的条件和要求。例如,线操纵特技模型飞机有垂直上升、俯冲和倒飞等动作,发动机起动后应将模型飞机先后放在抬头、低头、平飞和倒飞等状态去调整发动机,使抬头时马力最大,低头时稍稍富油。其他状态下都能正常工作不停车。 小发动机在实际应用中,还会产生这样那样的问题,要善于分析,找出原因,注意通过实践,总结经验。 3.平时维护: (1)经常保持发动机的内外清洁,决不要让尘土、灰沙、纸木屑或其他脏物进入内部。发动机不用的时候,要用清洁的布或纸包好。每次使用或放飞后,要用清洁的废纸或布将发动机外面的脏物擦净并包好;同时用带点汽油或煤油的布将模型飞机上的油擦去,再用干布擦净。不要在尘土很大或沙土地上开车或起飞;迫不得已需在沙土地上起飞时,应先泼些水或垫些厚纸和木板,以防沙土进入发动机。做模型飞机时,往往需用发动机测量位置和尺寸,应将发动机的进、排气口包好,防止纸木屑等脏物进入。 (2)爱护发动机。非必要时,不要连续用高转速开车,或用过份短小的螺旋桨和飞轮开车。不要将调压杆压得过紧。 (3)尽可能不拆或少拆发动机。 (4)要选用恰当的工具、合适的螺旋桨、成份正确和洁净的油料。 (5)与发动机经常接触的注油用具、工具和模型飞机等要保持清洁。应准备一只干净的小盒专门盛放注油用具,不要将注油用具随地乱放,以免灰土随着注油进入发动机。灰土象研磨剂一样,会很快磨坏发动机。最好将注油用具盒、油瓶和扳手等放在专门准备的布包或小木箱内。既便利使用,又保证清洁,更可避免外出放飞时忘带某种必需的工具。 4.注意安全——航模发动机虽然很小,但转速很高。因此,要注意安全,防止事故。 起动后,不要站在螺旋桨的旋转面内。不能使用已经破裂或断去一段和不平衡的螺旋桨,断裂的螺旋桨决不能胶上再使用。绝对不要使用金属做的螺旋桨。 存放油料时,不可靠近高温或有火种的地方。配制混合油和用汽油清洗发动机时,绝对不能抽烟,并防止抽烟人接近。不要在室内开发动机,尽可能避免吸入乙醚和废气。混合油瓶外面需注明有毒,以免误用。 二)有关小发动机的常识: 我们已经懂得了一些内燃机的工作原理,初步掌握了航模内燃机的起动和使用,大家一定希望知道更多的有关内燃机的知识。那么究竟有那些因素影响内燃机的性能呢?怎样才能更好地利用和发挥手中这台航模发动机的作用呢?下面就来介绍一些有关这方面的常识: 1.分气定时图——小发动机的进气、转气和排气的开始和终止时间叫做分气定时。分气定时对发动机的功率、转速、耗油率和起动性能等都有着很重要的影响。要合理选择分气定时,充分利用气体流动时产生的惯性,以便尽可能地将废气驱除干净,吸进更多的新鲜混合气,提高发动机的功率。分气定时图用来表示进气、转气及排气的时间和先后次序,从图上可以看出某个过程在何时开始、何时终止,以及开放延续时间的长短。在定时图上,各个气门的开闭时间都用曲轴旋转的角度来表示。 图14右方是曲轴式进气小发动机(如银燕1.5)的分气定时图。从图14左方曲柄销(曲轴后端装有连杆的一段圆销)的旋转运动来看,当活塞下降到排气口时,排气开始,曲柄销的位置相当于定时图上的“1”;曲柄销转到“2”时,转气口打开了,转气开始;活塞经过下止点后开始上升,曲柄销转到相当于“3”的位置时,转气终止;到“4”时,排气终止;活塞继续上升,曲柄销转到相当于“5”的位置时,曲轴上的进气孔与进气管接通,进气开始;活塞经过上止点后,转为下降,到“6”时,曲轴上的进气孔与进气管不再相通,进气终止。 2.负荷特性曲线——发动机工作时,用来转动螺旋桨的功率叫发动机有效功率,简称发动机功率。发动机功率是衡量小发动机性能的一个重要标准。当发动机在地面以不变的最大容许进气压力进行工作(不以任何物体堵住进气管口而增加进气阻力)时,可利用改变曲轴负荷的方法(如采用大小不同的螺旋桨)来改变转速。随着转速的改变,发动机的有效功率也发生变化。有效功率与转速的变化关系叫发动机的负荷特性。用来表示发动机有效功率(马力)随着曲轴转速(每分钟转数)高低而变化的曲线叫发动机负荷特性曲线,或称外部特性曲线和功率转速曲线。根据这根曲线,可查出某一转速时发动机的功率。例如,在图15的曲线上,当这台发动机的转速为7000转/分时,它的功率是0.135匹马力左右;10000转/分左右,功率最大,这时的转速称为最大功率转速;转速再增高,功率反而下降。不同型号的发动机,其功率转速曲线也不同。 由此看来,如要发挥某台发动机的最大功率,那就要选择适当尺寸的螺旋桨,使发动机在飞行中的转速,恰好在最大功率转速附近。飞行中,发动机的转速一般要比地面高10%左右。有些小发动机的说明书,附有功率转速曲线图,可供参考。 3.测定转速——上面说过,如能知道发动机的转速,就可根据发动机的功率转速曲线来推求功率。即使没有功率转速曲线,也可从转速上大致地估计出功率的大小来。因为一般普及用压燃式小发动机的最大功率转速约在10000~14000转/分之间,知道转速就可大约估计该发动机的最大功率是否发挥了。 测定转速可用测量范围在20000转/分左右的离心式或闪光式转速计来进行。也可自制一个简单实用的振动式转速计,它是根据物理学上共振原理制成的,测速时并且不会消耗发动机的功率。 振动式转速计由十几根不同长度的钢丝做成(图16)。每根钢丝的自振频率都不同,钢丝越长,自振频率越低;长度越短,自振频率越高。小发动机工作时,每转一转,活塞上下一次,产生一次振动。当发动机产生的振动频率和某根钢丝的自振频率相同或成整数的倍数时,这根钢丝就会因共振而开始振动。使用时,将振动式转速计固定在发动机附近,或直接用底座靠在发动机的气缸头等部位上;只要观察那一根钢丝的振动幅度最大,就可根据该钢丝的刻度测得发动机的转速。其准确度依钢丝质量、直径大小及钢丝和底座的夹紧程度不同而略有出入,一般为±200转/分。最好先用标准转速表校准刻度。 钢丝的自振频率和它的直径、自由长度及钢材的弹性有关。一般钢丝的自振频率f可按下式计算: 其中:d 钢丝直径(单位厘米) L 钢丝自由长度(单位厘米) 或其中:n 发动机转速(单位转/分) 利用上式,可以求出不同直径的钢丝在代表某一转速而产生共振时所需要的自由长度。 转/分 自由长度 毫米 转/分 自由长度 毫米 自由长度 毫米 3000 3500 4000 4500 5000 5500 6000 117 110 103 98 94 90 86 6500 7000 7500 8000 8500 9000 9500 82.5 79 76.3 74 71.5 69.5 67.8 10000 10500 11000 11500 12000 12500 13000 66 64.5 63 61.5 60 59 58 如用直径1毫米的钢丝,其代表各种转速的自由长度(露在底座外面的钢丝长度)见上表。 这种转速计也可用金属片做底座(图17、18)。靠近钢丝根部的底座上写有代表转速的刻度。为了缩小体积,可少用几根钢丝。还可采用活动铅笔式的构造,以便携带。在装铅芯的位置上有一根可以伸缩的钢丝,测转速时拿转速计的一端靠上气缸头,将钢丝伸长或缩短,看钢丝在那个位置振动最剧烈,据此相应刻度便能知道发动机的转速。 4.选用螺旋桨——练习起动航模小发动机时,需要螺旋桨。首先,拨桨起动需要螺旋桨;此外,螺旋桨具有使小发动机连续工作的飞轮作用和冷却作用。 供练习起动和磨车用的螺旋桨,可以比放飞的螺旋桨大些和厚些。较重的螺旋桨有利于起动和运转的稳定。如用在1.5毫升的发动机上,螺旋桨直径约为240毫米,螺距约为120毫米;用在2.5毫升发动机上,螺旋桨直径约为260毫米,螺距约为130毫米。 应选择质地细洁坚实、不易开裂、强度较好又易加工的木材做螺旋桨。较合适的有松木和椴木等。桦木也很合适,就是稍硬些,加工时费点力。桐木太软,强度又差,不能选用。 桨叶的断面一般应呈平凸翼型状,前缘较圆,后缘较薄;桨根部要厚实些,以保证强度,根部断面呈双凸形。练习起动时,由于手指反复拨动,往往会被桨叶后缘磨痛或使后缘开裂。因此,要将练习起动用螺旋桨的后缘做得厚些、圆滑些。 制作螺旋桨的弧面时,用木锉加工比用刀子好,只是加工后的表面毛糙些,这可用粗钢锉或砂纸多打磨几下。完工后的螺旋桨要仔细检查平衡。要求两边桨叶的长短、外形、重量和对应断面的桨叶角等都一样,特别是两边桨叶的重量要一样。不平衡的螺旋桨,在发动机起动后会引起剧烈振动,以致造成停车、松动和磨坏轴承等零件的情况。桨叶表面要涂三至五遍透布油(也可用油漆或喷漆代替),防止发动机燃料渗入木材,影响平衡。 决不能使用金属螺旋桨,以防把手打坏。气冷式新发动机不能用飞轮开车,那会因冷却不好而使零件损坏。 图19是螺旋桨的制作步骤,最下方是完工后的形状。图20是供参考用的桨叶样板(直径230毫米)。 飞机螺旋桨工作原理 一、工作原理 可以把螺旋桨看成是一个一面旋转一面前进的机翼进行讨论。流经桨叶各剖面的气流由沿旋转轴方向的前进速度和旋转产生的切线速度合成。在螺旋桨半径r1和r2(r1<r2)两处各取极小一段,讨论桨叶上的气流情况。V—轴向速度;n—螺旋桨转速;φ—气流角,即气流与螺旋桨旋转平面夹角;α—桨叶剖面迎角;β—桨叶角,即桨叶剖面弦线与旋转平面夹角。显而易见β=α+φ。空气流过桨叶各小段时产生气动力,阻力ΔD和升力ΔL,合成后总空 参考资料:
Ⅳ 最火的国产硬派越野坦克300遇上老大哥BJ40会怎么样
说起硬派越野车,人们往往会想到的是Jeep牧马人、路虎卫士、福特猛禽等等,硬朗的外观和较为强悍的越野性能,是大家喜爱的原因,但是进口车高昂的价格让许多喜欢这些车的人无法承受。
对于购车的预算一般在20万左右的普通人来说,在这个价位的硬派越野车中,关注度较高的就只有两款,一款是老牌国民越野车-北京BJ40,另一款就是长城近期推出的坦克300。那么这两辆车该怎么选呢?今天我们针对这两款车做下对比。
综上所述:坦克300和BJ40都属于同价位性价比较高的越野车,对两辆车进行综合对比,坦克300的外观时尚且复古,车内功能配置十分丰富,加上发动机终身质保和五年或十五万公里的保修,非常适合轻度越野且想兼顾家用的朋友。BJ40的外观较为硬派,有着三年或十万公里的保修,作为老牌越野车,各项的改装方案也较为成熟,适合想专注越野的朋友,欢迎私信留言讨论。
【本文来自易车号作者车314,版权归作者所有,任何形式转载请联系作者。内容仅代表作者观点,与易车无关】
Ⅳ 哗众取宠!爆改奥迪TT RS挑战全网到底有多嚣张
最近几天,某音上一爆改奥迪TTRS车主突然就火了,号称是中国最大马力奥迪车主,且加速挑战全网的言论,短时间激起千层浪,惹怒不少网友。
中国汽车工业本身起步较晚,汽车文化也在缓慢成长中。虽然近几年汽车销量呈增长快速,中国品牌车企也逐渐强大,但中国并没有到平均每个家庭都拥有2-3辆车的地步。
观点:
这类视频本人是非常讨厌的,我喜欢汽车,喜欢手动挡,也喜欢骑摩托车,随着国内汽车、机车类文化的成长,也会更加成熟,形成我们中国特有的汽车和机车文化。
而此次爆改奥迪TTRS爆改后马力和加速表现确实很强,但依旧不抵日产GT-R。而国内机车圈本身限制就非常多,加上近一年摩托车事故频发,禁摩与否一直被抬上话题尖端,我也希望各位摩友不要去沾这种事件,不管是改装车还是摩托车希望不要受到挑拨去回应这类挑衅而去比赛,以免产生不必要的损失,也不要为禁摩和限制改装的现有环境添油加醋了。
而该爆改奥迪TTRS车主公开在网络称“没钱,你玩个毛”,还使用炮灰、挑战等字眼来表现自己。不论这是他的个人行为,还是背后公司的炒作行为,我还是希望各位车友能够沉住气,看看就好。
在这个流量、快消时代,很多事情都不是我们能左右的,你看到的不一定是黑,听到的也不一定是白。
对于这类人,让时间冲淡就好,而我们淡然一笑,足以。
本文来源于汽车之家车家号作者,不代表汽车之家的观点立场。
Ⅵ 被误认为是大G 这台爆改后的福特简直就是“陆地战斗机”
加拿大INKAS是闻名全球的改装车厂,擅长将汽车改造具有强大的防弹功能以及豪华的内装,先前就推出过爆改的奔驰G63以及防弹版宾利Bentayga。日前,INKAS改装厂再度推出最新2020年式的防弹车SentryCivilian。
外部设计硬派
动力搭载一台6.7升V8涡轮柴油发动机,最大输出330马力,匹配10速自动变速箱,配备四轮驱动。
想要拥有这款车并不容易,售价就高达35万美元起。就算你有这样的购车资金,也需要有足够厚的钱包应付那个40加仑的油箱和超高油耗!新车在2020年就可以进入市场,但是国内的消费者就只能看看过一下瘾。
本文来源于汽车之家车家号作者,不代表汽车之家的观点立场。
Ⅶ 如何制作遥控直升飞机都需要什么
但如果您真想要自己动手进行遥控直升飞机制作,那么建议各位请教老师或是通过网上的遥控直升飞机制作视频进行学习后,再制作。当然也可以购买遥控直升飞机基本版,自己再往上面添加一些功能,如具有航拍地图功能的航拍设备等。
注意事项。
①机型大小选择
遥控直升飞机也是有大有小的,很多人总认为买大的最好,其实这是不正确的;记住,
合适才是最理想的,特别是小朋友,父母在购买遥控直升飞机的时候,应该考虑孩子的安全。
②遥控通道选择
对于新手玩家来讲,建议先购买2到4个通道的遥控直升飞机。因为遥控直升飞机通道越多,操作越复杂,同时价钱也越贵。
③品质性能选择
购买任何东西都要注意质量,市面上的很多遥控直升飞机,虽然外观一样,但其内部性能差别却很大,价格落差当然也会很大。
④飞行时间
一般正常情况下,遥控直升飞机的连续飞行时间都会被控制在5到6分钟,如果去购买时,老板告诉“我家的遥控直升飞机能连续飞上半个小时不下地”,那这个遥控直升飞机肯定有问题,建议不要购买。
⑤行高度
各位玩家在操作遥控直升飞机时,不要一味的追求高度,一般情况下遥控直升飞机的飞行高度都背控制在30米以内,超出这个高度会让很难控制,甚至出现遥控直升飞机坠毁的惨状。
⑥耐摔性
遥控直升飞机的耐摔性一直在人们的理解当中存在误区,耐摔并不代表着不会被摔坏,只是说抗摔的能力而已,所以各位玩家在购买遥控直升飞机时一定要注意它的耐摔性能。
Ⅷ 遥控飞机制作
怎样制作遥控飞机
0 购买发动机和设备。(花去经费的70%)
1 备齐工具。
2 了解模型内构(与真飞机相似,但简化好多)。
3 备齐和了解材料(花去经费10-20%)。
4 制图,我是用Autocad设计和输出。
5 制作和调试。
6 找玩过遥控模型带你试飞,因为那天你可能会兴奋的手打抖。
怎样制作遥控飞机
要分为几个部分:
1:遥控器部分.2.无线电发射接收部分.3控制电路部分.4.飞机的机械部分.
我对最后一个部分不熟,不过应该有买的吧.那个飞机的模型,你可以买一个,拿回来在它的基础上改装.
遥控器那边, 如果你的功能不多,可以用2262\2272这一对编码\解码芯片.至于无线电,有卖那种做好的发射\接收模块的,那个东西,自己做很麻烦,有时候又起不了振,不如就买个现成的.
把上面的东西连好后,就可以从2272输出信号了,用这个信号控制步进电机之类的,当然需要自己连个电路了.自己设计,不难.
机械技术其实非常简单,首先是材料得选定,要求是必须轻,而且有一定得强度,现在在小模型方面应用最多得是纳米材料,看上去有点像泡沫塑料,但是强度较大。
其次就是机械,简单得模型你需要两个马达,装在飞机机翼上,马达只需要控制转速就可以了。当两个马达都高速旋转时,带动螺旋桨使飞机升空。当转速较低或者停止时,飞机下降。当两侧马达转速不平衡时,飞机朝转速低得马达方向倾斜旋转,只要把马达得控制电路做好就ok。
只能简单的告诉你,飞机航模有分橡筋动力,内燃机动力,微型涡轮喷气式动力,电动动力.一架飞机航模由机身,机翼,尾翼,接受器,舵机,轮子.这是最基本的.比如说,一架内燃机动力的飞机,有内燃机5.0CC,$500.有舵机用于控制机襟即升降,尾翼即方向.还有油箱,一般600毫升的混合油(汽油+酒精+煤油),油管.接受器(越高级就越复杂),机身,机翼,记住机身是机翼的70%-80%的长度.如果是初学者,我推荐你用电动的既撞不烂,又便宜,又简单.时间有限我不说太多了,我也是一个飞机航模的初学者呀!有两架飞机,今年打算搞一架航空母舰,哈哈!
航模制作
真羡慕啊!
这不是钱的问题,需要不了多少钱的。
1.一个大型的流水工作台兼木工台。
2.一个专业点的制作台(包括钻床,小车床等)。
3.两个工具箱,考究点的话做一个工作墙。
4.可以的话辟出一小间油漆间。
5.可以的话建造一个小的水池。
6.电工制作台和相配套的工具。
7.设计兼写字台。
8.全方位的灯光照明。
9.整套测试设备(万用表,测速器等)。
10.各种小零件(这就要靠你平时的收集的)。
一一不能说齐,靠你自己的积累了。
航空模型的一般知识
一、什么叫航空模型
在国际航联制定的竞赛规则里明确规定“航空模型是一种重于空气的,有尺寸限制的,带有或不带有发动机的,不能载人的航空器,就叫航空模型。
其技术要求是:
最大飞行重量同燃料在内为五千克;
最大升力面积一百五十平方分米;
最大的翼载荷100克/平方分米;
活塞式发动机最大工作容积10亳升。
1、什么叫飞机模型
一般认为不能飞行的,以某种飞机的实际尺寸按一定比例制作的模型叫飞机模型。
2、什么叫模型飞机
一般称能在空中飞行的模型为模型飞机,叫航空模型。
二、模型飞机的组成
模型飞机一般与载人的飞机一样,主要由机翼、尾翼、机身、起落架和发动机五部分组成。
1、机翼———是模型飞机在飞行时产生升力的装置,并能保持模型飞机飞行时的横侧安定。
2、尾翼———包括水平尾翼和垂直尾翼两部分。水平尾翼可保持模型飞机飞行时的俯仰安定,垂直尾翼保持模型飞机飞行时的方向安定。水平尾翼上的升降舵能控制模型飞机的升降,垂直尾翼上的方向舵可控制模型飞机的飞行方向。
3、机身———将模型的各部分联结成一个整体的主干部分叫机身。同时机身内可以装载必要的控制机件,设备和燃料等。
4、起落架———供模型飞机起飞、着陆和停放的装置。前部一个起落架,后面两面三个起落架叫前三点式;前部两面三个起落架,后面一个起落架叫后三点式。
5、发动机———它是模型飞机产生飞行动力的装置。模型飞机常用的动 力装置有:橡筋束、活塞式发动机、喷气式发动机、电动机。
三、航空模型技术常用术语
1、翼展——机翼(尾翼)左右翼尖间的直线距离。(穿过机身部分也计算在内)。
2、机身全长——模型飞机最前端到最末端的直线距离。
3、重心——模型飞机各部分重力的合力作用点称为重心。
4、尾心臂——由重心到水平尾翼前缘四分之一弦长处的距离。
5、翼型——机翼或尾翼的横剖面形状。
6、前缘——翼型的最前端。
7、后缘——翼型的最后端。
8、翼弦——前后缘之间的连线。
9、展弦比——翼展与平均翼弦长度的比值。展弦比大说明机翼狭长。
飞翼式模型滑翔机的飞行原理
飞翼式弹射滑翔机由机翼、折叠绞链、复位钩兼弹射钩和复位橡筋组成。在机翼翼尖的后缘部分设有调整片(图一)。把两片机翼折起来合成一体,用一根橡筋用力一弹,它就直冲蓝天,不一会机翼展开,象一只大鸟一样飞翔起来,十分有趣,它飞行方便,容易调整,又十分安全。
飞翼就是没有水平尾翼的飞机。飞翼没有尾翼,怎么会飞呢?我们知道滑翔机是由机翼产生升力,由重力向前的分力提供给滑翔机前进速度(图二)。水平尾翼掌握平衡(图三),并使它具有良好的俯仰安定性。飞翼有机翼,也有重力,这与普通滑翔机一样,具有一定的前进速度,能产生升力,但是没有尾翼;怎样来保持平衡和安定呢?原来飞翼的重心都设在很前面,机翼产生的升力一方面用来克服重力,另一方面它产生一个低头力矩,而飞翼翼尖附近的调整片一般向上翘起,产生一个向下的力,这对重心来说是一个抬头力矩,使整架模型保持平衡(图四)。同时,调整片也起到保持飞翼俯仰安定性的作用,这样飞翼与常规飞机就一样了:它有向前的飞行速度、由机翼产生升力克服重力、由调整片来保持平衡和安全。
飞翼式弹射滑翔机的飞行方法是:右手持弹射棒,左手拿住合拢后的机翼翼尖部分,弹射橡筋挂在右侧的弹射钩上(即右侧复位钩),弹射方向垂直向上(图五),只要一松开左手,合拢的飞翼模型就像火箭一样射向天空……。这里一定要注意,用右手拿弹射棒时一定要使用右边的弹射钩,你如果使用左边的弹射钩,飞翼就会弹到弹射棒上(图六),甚至会弹到右手。
飞翼滑翔姿态依靠调整调整片的角度,调整方法与普通的模型相仿:如果模型向下坠,也就是头重,那么可以把调整片向上扳一些,增加上翘的角度;如果模型产生波状飞行或失速,也就是头轻,那么把调整片向下扳一些,即减小调整片向上的角度,同学们可以在反复的飞行中调整,取得一个最佳的角度。
调整时,还应注意飞翼的上反角不宜过大,因为上反角是用来保持模型的横侧安定性的,而飞翼的后掠角也可以起到上反角的作用,因此上反角不宜过大。试飞时如果滑翔机左右摇晃,就是上反角太大了,可以减小一些。
飞翼式弹射滑翔机高速上升时,依靠迎面而来的强大空气动力,使两片机翼紧紧合在一起,当速度减小时,空气动力也减小,空气对机翼的压力小于复位橡筋的张力时,飞翼的两片机翼就自然张开,进入滑翔。如果复位橡筋的力量很大,飞翼就弹不高,适当调整复位橡筋的力量,可以使你的模型弹得更高,但是一定要保证机翼能平稳展开。
如果你把机翼的后掠角适当地增加一些(图七),可以使你的小飞机飞得更稳定。因为后掠角略为增大一些,可以使翼尖更向后伸展,这样有利于飞翼的安定性。
航空模型的分类
一、普及级航空模型的分类和分级(竞赛项目)
一、自由飞行类(P1类)
P1A——牵引模型滑翔机(分P1A-1、P1A-2两级)
P1B——橡筋模型滑翔机(分P1B-1、P1B-2两级)
P1C——活塞式发动机模型滑翔机(分P1C-1、P1C-2两级)
P1D——室内模型飞机(分P1D-1、P1D-2两级)
P1E——电动模型飞机
P1F——橡筋模型直升飞机
P1S——手掷模型滑翔机(分留空时间和直线距离)
P1T——弹射模型滑翔机。
二、线操纵类(P2类)
P2B——线操纵特技模型飞机(分P2B-1、P2B-2两级)
P2C——线操纵小组竞速模型飞机
P2D——线操纵空战模型飞机
P2E——线操纵电动特技模型飞机(分P2E-1、P2E-2两级)
P2X——线操纵橡筋模型飞机
三、无线电遥控类(P3类)
P3A——无线电遥控特技模型飞机(分P3A-1、P3A-2两级)
P3B——无线电遥控模型滑翔机(分P3B-1、P3B-2两级)
P3E——无线电遥控电动模型飞机。
二、在青少年中广泛开展的航空模型项目
一、纸模型飞机
二、手掷模型滑翔机(简称:手掷,编号为P1S)
三、橡筋模型直升飞机
四、弹射模型滑翔机(简称:弹射,编号为P1T)
五、牵引模型滑翔机(简称:牵引,普及级编号为P1A-1和P1A-2,国际级编号为F1A)
六、橡筋模型飞机(简称:橡筋,普及级编号为P1B-1和P1B-2,国际级为F1B
飞机模型翼型
常用的模型飞机翼型有对称、双凸、平凸、凹凸,s形等几种,如图所示
对称翼型的中弧线和翼弦重合,上弧线和下弧线对称。这种翼型阻力系数比较小,但升阻比也小。一般用在线操纵或遥控特技模型飞机上
双凸翼型的上弧线和下弧线都向外凸,但上弧线的弯度比下弧线大。这种翼型比对称翼型的升阻比大。一般用在线操纵竞速或遥控特技模型飞机上
平凸翼型的下弧线是一条直线。这种翼型最大升阻比要比双凸翼型大。一般用在速摩不太高的初级线操纵或遥控模型飞机上
凹凸翼型的下弧线向内凹入。这种翼型能产生较大的升力,升阻比也比较大。广泛用在竞赛留空时间的模型飞机上
S形翼型的中弧线象横放的S形。这种翼型的力矩特性是稳定的,可以用在没有水平尾翼的模型飞机上
机翼升力原理
如果两手各拿一张薄纸,使它们之间的距离大约4~6厘米。然后用嘴向这两张纸中间吹气,如图所示。你会看到,这两张纸不但没有分开,反而相互靠近了,而且用最吹出的气体速度越大,两张纸就越靠近。从这个现象可以看出,当两纸中间有空气流过时,压强变小了,纸外压强比纸内大,内外的压强差就把两纸往中间压去。中间空气流动的速度越快,纸内外的压强差也就越大。
飞机机翼地翼剖面又叫做翼型,一般翼型的前端圆钝、后端尖锐,上表面拱起、下表面较平,呈鱼侧形。前端点叫做前缘,后端点叫做后缘,两点之间的连线叫做翼弦。当气流迎面流过机翼时,流线分布情况如图2。原来是一股气流,由于机翼地插入,被分成上下两股。通过机翼后,在后缘又重合成一股。由于机翼上表面拱起,是上方的那股气流的通道变窄。根据气流的连续性原理和伯努利定理可以得知,机翼上方的压强比机翼下方的压强小,也就是说,机翼下表面受到向上的压力比机翼上表面受到向下的压力要大,这个压力差就是机翼产生的升力。
使用要领和有关常识
(一)小发动机的使用要领:使用小发动机要注意以下几个方面:
1.磨合运转——凡是新发动机,必须先以较低的转速运转一个阶段,时间从半小时到一小时以至更多些,称为磨合运转(磨车)。磨合运转很重要,磨合运转不好,发动机不但寿命短、马力小、难以起动,还会带来很多故障。说磨车没有用,是白白损耗发动机等认识都是片面的。正确的磨合运转决不会缩短发动机的寿命,相反会延长寿命与改进性能。即以新汽车和摩托车等为例,出厂时汽化器上装有限制转速的堵头,或是规定车速不得超过某个限度,要行驶几百公里后才可逐步地提高车速,这也就是为了磨合各个机件。
为什么要磨车呢?
因为每台小发动机都是由若干零件装成的,这些零件的相互配合还没有完全协调,各个摩擦表面更免不了有高低不平或毛刺的地方。如在这时就以高速工作,活塞和气缸等零件就会产生过热甚至卡死,造成表面拉毛等损伤。磨合运转就是以较慢的速度运转,慢慢地、一点一滴地将那些互相接触的零件表面都“磨”得很光滑,能互相适应和协调配合。这好比我们刚穿上一双新鞋时会感到有点不舒服一样,如果硬要在这时候跑步的话,脚就会不适应;如果穿了几天以后再跑步,脚就会觉得“顺”多了。
磨车必须在结实的试车台或桌子上进行,决不能装在模型飞机上或其他不够结实的板上进行,以免在运转时引起振动,使机件受损。
磨车要用较大的螺旋桨来限制发动机的转速,一般维持在5000~6000转/分左右,然后逐步提高转速。转速过低会产生较大的振动,对零件不利。最好是稳定均匀的中等转速。磨车期间,不要使用有附加剂的油料,油门要开大些,不要将调压杆压得太紧。
一般磨车步骤如下:
刚磨车时,应在发动机运转1~2分钟后就迅速关断油路停车,待发动机稍稍冷却后再开车,不要连续运转很长时间。这样做,也有利于熟悉这台发动机的起动和调整。而后,先低速运转20~30分钟,如果气缸头不太烫手(手指按上1~2秒钟也能忍受),转速均匀,就可以稍稍压紧调压杆,关小一点油针,提高一点转速。继续磨车20分钟左右。再换上较小的螺旋桨,逐步提高转速。最后用放飞模型的螺旋桨,高速磨车10~20分钟。
新发动机刚磨车时,排气口有黑色油点喷出。如将手指伸近排气口,即会喷上一层油,在阳光下可从油层中看到闪闪发光的金属粉末。一般磨车半小时左右,喷出的黑油即大大减少或消除。这时应逐步提高转速,如转速一直稳定,也无“热死”现象,磨车即告结束,可以将发动机装在模型飞机上使用。每台发动机需要磨车的时间不全相同,要根据具体情况来决定。一般约一小时左右。
经过正确磨车的小发动机,具有良好的气密性,容易起动,转动时轻松灵活,即使连续高速运转,转速也不改变(可从声音来判断)。
2.安装——压燃式小发动机可以用作航空、航海和陆上模型的动力装置。当用在模型飞机上时,它可以装在机头前方(拉进式),即是一般最普通的式样;也可以
装在机尾等部位(推进式),这时必须使后桨垫和机匣前端面间的距离小于曲柄销和机匣后盖间的距离,以便螺旋桨的推力通过后桨垫传到机匣端面,不使曲柄销和后盖产生摩擦。
小发动机可以正装(气缸头在上)、倒装(气缸头在下)和横装(气缸头朝向侧面)。最普通的是正装和横装。倒装起动较难,容易引起油多。在线操纵模型上,尤其是线操纵特技模型上,为了保护发动机,经常采用横装。横装的发动机仍能很好起动。
图13是小发动机在模型飞机上横装时的起动方法。助手蹲在模型的右侧稍靠后,左手紧抓靠近发动机的机身部分(主要是抓住,不是使劲将模型往地面压,以免压弯起落架或使螺旋桨打地),右手轻轻扶住右翼尖;起动者右手拨桨,左手捏住调压杆,以便根据右手感到的力量大小,随时调节压缩比。熟练后也可一人起动,用左手抓模型,右手拨桨。
小发动机一定要结实可靠地装在模型的发动机架上;每次飞行后必须检查,有松动时立即拧紧。装得不牢靠的发动机,开动后会引起剧烈振动,使模型无法飞好。
调整装在模型上的发动机时,不能只顾地面运转情况,必须考虑飞行的条件和要求。例如,线操纵特技模型飞机有垂直上升、俯冲和倒飞等动作,发动机起动后应将模型飞机先后放在抬头、低头、平飞和倒飞等状态去调整发动机,使抬头时马力最大,低头时稍稍富油。其他状态下都能正常工作不停车。
小发动机在实际应用中,还会产生这样那样的问题,要善于分析,找出原因,注意通过实践,总结经验。
3.平时维护:
(1)经常保持发动机的内外清洁,决不要让尘土、灰沙、纸木屑或其他脏物进入内部。发动机不用的时候,要用清洁的布或纸包好。每次使用或放飞后,要用清洁的废纸或布将发动机外面的脏物擦净并包好;同时用带点汽油或煤油的布将模型飞机上的油擦去,再用干布擦净。不要在尘土很大或沙土地上开车或起飞;迫不得已需在沙土地上起飞时,应先泼些水或垫些厚纸和木板,以防沙土进入发动机。做模型飞机时,往往需用发动机测量位置和尺寸,应将发动机的进、排气口包好,防止纸木屑等脏物进入。
(2)爱护发动机。非必要时,不要连续用高转速开车,或用过份短小的螺旋桨和飞轮开车。不要将调压杆压得过紧。
(3)尽可能不拆或少拆发动机。
(4)要选用恰当的工具、合适的螺旋桨、成份正确和洁净的油料。
(5)与发动机经常接触的注油用具、工具和模型飞机等要保持清洁。应准备一只干净的小盒专门盛放注油用具,不要将注油用具随地乱放,以免灰土随着注油进入发动机。灰土象研磨剂一样,会很快磨坏发动机。最好将注油用具盒、油瓶和扳手等放在专门准备的布包或小木箱内。既便利使用,又保证清洁,更可避免外出放飞时忘带某种必需的工具。
4.注意安全——航模发动机虽然很小,但转速很高。因此,要注意安全,防止事故。
起动后,不要站在螺旋桨的旋转面内。不能使用已经破裂或断去一段和不平衡的螺旋桨,断裂的螺旋桨决不能胶上再使用。绝对不要使用金属做的螺旋桨。
存放油料时,不可靠近高温或有火种的地方。配制混合油和用汽油清洗发动机时,绝对不能抽烟,并防止抽烟人接近。不要在室内开发动机,尽可能避免吸入乙醚和废气。混合油瓶外面需注明有毒,以免误用。
二)有关小发动机的常识:
我们已经懂得了一些内燃机的工作原理,初步掌握了航模内燃机的起动和使用,大家一定希望知道更多的有关内燃机的知识。那么究竟有那些因素影响内燃机的性能呢?怎样才能更好地利用和发挥手中这台航模发动机的作用呢?下面就来介绍一些有关这方面的常识:
1.分气定时图——小发动机的进气、转气和排气的开始和终止时间叫做分气定时。分气定时对发动机的功率、转速、耗油率和起动性能等都有着很重要的影响。要合理选择分气定时,充分利用气体流动时产生的惯性,以便尽可能地将废气驱除干净,吸进更多的新鲜混合气,提高发动机的功率。分气定时图用来表示进气、转气及排气的时间和先后次序,从图上可以看出某个过程在何时开始、何时终止,以及开放延续时间的长短。在定时图上,各个气门的开闭时间都用曲轴旋转的角度来表示。
图14右方是曲轴式进气小发动机(如银燕1.5)的分气定时图。从图14左方曲柄销(曲轴后端装有连杆的一段圆销)的旋转运动来看,当活塞下降到排气口时,排气开始,曲柄销的位置相当于定时图上的“1”;曲柄销转到“2”时,转气口打开了,转气开始;活塞经过下止点后开始上升,曲柄销转到相当于“3”的位置时,转气终止;到“4”时,排气终止;活塞继续上升,曲柄销转到相当于“5”的位置时,曲轴上的进气孔与进气管接通,进气开始;活塞经过上止点后,转为下降,到“6”时,曲轴上的进气孔与进气管不再相通,进气终止。
2.负荷特性曲线——发动机工作时,用来转动螺旋桨的功率叫发动机有效功率,简称发动机功率。发动机功率是衡量小发动机性能的一个重要标准。当发动机在地面以不变的最大容许进气压力进行工作(不以任何物体堵住进气管口而增加进气阻力)时,可利用改变曲轴负荷的方法(如采用大小不同的螺旋桨)来改变转速。随着转速的改变,发动机的有效功率也发生变化。有效功率与转速的变化关系叫发动机的负荷特性。用来表示发动机有效功率(马力)随着曲轴转速(每分钟转数)高低而变化的曲线叫发动机负荷特性曲线,或称外部特性曲线和功率转速曲线。根据这根曲线,可查出某一转速时发动机的功率。例如,在图15的曲线上,当这台发动机的转速为7000转/分时,它的功率是0.135匹马力左右;10000转/分左右,功率最大,这时的转速称为最大功率转速;转速再增高,功率反而下降。不同型号的发动机,其功率转速曲线也不同。
由此看来,如要发挥某台发动机的最大功率,那就要选择适当尺寸的螺旋桨,使发动机在飞行中的转速,恰好在最大功率转速附近。飞行中,发动机的转速一般要比地面高10%左右。有些小发动机的说明书,附有功率转速曲线图,可供参考。
3.测定转速——上面说过,如能知道发动机的转速,就可根据发动机的功率转速曲线来推求功率。即使没有功率转速曲线,也可从转速上大致地估计出功率的大小来。因为一般普及用压燃式小发动机的最大功率转速约在10000~14000转/分之间,知道转速就可大约估计该发动机的最大功率是否发挥了。
测定转速可用测量范围在20000转/分左右的离心式或闪光式转速计来进行。也可自制一个简单实用的振动式转速计,它是根据物理学上共振原理制成的,测速时并且不会消耗发动机的功率。
振动式转速计由十几根不同长度的钢丝做成(图16)。每根钢丝的自振频率都不同,钢丝越长,自振频率越低;长度越短,自振频率越高。小发动机工作时,每转一转,活塞上下一次,产生一次振动。当发动机产生的振动频率和某根钢丝的自振频率相同或成整数的倍数时,这根钢丝就会因共振而开始振动。使用时,将振动式转速计固定在发动机附近,或直接用底座靠在发动机的气缸头等部位上;只要观察那一根钢丝的振动幅度最大,就可根据该钢丝的刻度测得发动机的转速。其准确度依钢丝质量、直径大小及钢丝和底座的夹紧程度不同而略有出入,一般为±200转/分。最好先用标准转速表校准刻度。
钢丝的自振频率和它的直径、自由长度及钢材的弹性有关。一般钢丝的自振频率f可按下式计算:
其中:d 钢丝直径(单位厘米)
L 钢丝自由长度(单位厘米)
或其中:n 发动机转速(单位转/分)
利用上式,可以求出不同直径的钢丝在代表某一转速而产生共振时所需要的自由长度。
转/分
自由长度
毫米
转/分
自由长度
毫米
自由长度
毫米
3000
3500
4000
4500
5000
5500
6000
117
110
103
98
94
90
86
6500
7000
7500
8000
8500
9000
9500
82.5
79
76.3
74
71.5
69.5
67.8
10000
10500
11000
11500
12000
12500
13000
66
64.5
63
61.5
60
59
58
如用直径1毫米的钢丝,其代表各种转速的自由长度(露在底座外面的钢丝长度)见上表。
这种转速计也可用金属片做底座(图17、18)。靠近钢丝根部的底座上写有代表转速的刻度。为了缩小体积,可少用几根钢丝。还可采用活动铅笔式的构造,以便携带。在装铅芯的位置上有一根可以伸缩的钢丝,测转速时拿转速计的一端靠上气缸头,将钢丝伸长或缩短,看钢丝在那个位置振动最剧烈,据此相应刻度便能知道发动机的转速。
4.选用螺旋桨——练习起动航模小发动机时,需要螺旋桨。首先,拨桨起动需要螺旋桨;此外,螺旋桨具有使小发动机连续工作的飞轮作用和冷却作用。
供练习起动和磨车用的螺旋桨,可以比放飞的螺旋桨大些和厚些。较重的螺旋桨有利于起动和运转的稳定。如用在1.5毫升的发动机上,螺旋桨直径约为240毫米,螺距约为120毫米;用在2.5毫升发动机上,螺旋桨直径约为260毫米,螺距约为130毫米。
应选择质地细洁坚实、不易开裂、强度较好又易加工的木材做螺旋桨。较合适的有松木和椴木等。桦木也很合适,就是稍硬些,加工时费点力。桐木太软,强度又差,不能选用。
桨叶的断面一般应呈平凸翼型状,前缘较圆,后缘较薄;桨根部要厚实些,以保证强度,根部断面呈双凸形。练习起动时,由于手指反复拨动,往往会被桨叶后缘磨痛或使后缘开裂。因此,要将练习起动用螺旋桨的后缘做得厚些、圆滑些。
制作螺旋桨的弧面时,用木锉加工比用刀子好,只是加工后的表面毛糙些,这可用粗钢锉或砂纸多打磨几下。完工后的螺旋桨要仔细检查平衡。要求两边桨叶的长短、外形、重量和对应断面的桨叶角等都一样,特别是两边桨叶的重量要一样。不平衡的螺旋桨,在发动机起动后会引起剧烈振动,以致造成停车、松动和磨坏轴承等零件的情况。桨叶表面要涂三至五遍透布油(也可用油漆或喷漆代替),防止发动机燃料渗入木材,影响平衡。
决不能使用金属螺旋桨,以防把手打坏。气冷式新发动机不能用飞轮开车,那会因冷却不好而使零件损坏。
图19是螺旋桨的制作步骤,最下方是完工后的形状。图20是供参考用的桨叶样板(直径230毫米)。
飞机螺旋桨工作原理
一、工作原理
可以把螺旋桨看成是一个一面旋转一面前进的机翼进行讨论。流经桨叶各剖面的气流由沿旋转轴方向的前进速度和旋转产生的切线速度合成。在螺旋桨半径r1和r2(r1<r2)两处各取极小一段,讨论桨叶上的气流情况。V—轴向速度;n—螺旋桨转速;φ—气流角,即气流与螺旋桨旋转平面夹角;α—桨叶剖面迎角;β—桨叶角,即桨叶剖面弦线与旋转平面夹角。显而易见β=α+φ。空气流过桨叶各小段时产生气动力,阻力ΔD和升力ΔL,合成后总空
Ⅸ 世界上最先进的战机排名
F-22“猛禽”:短期内无法撼动其霸主地位
F-22更加具有优势的是其未来发展的潜力,随着新型空空导弹和火控软硬件的不断升级,再加上机体侧面相控阵部件的加装,F-22的发展还将不断地推进。 2008年里,F-22“猛禽”战斗机的霸主地位仍无法动摇。在电子设别、机动性、武器配备方面,F-22的优势面临苏-35BM的挑战,但F-22还拥有至关重要的隐身性能优势,这一项上足以导致苏-35BM在对抗F-22的战斗中处于下风。具体来讲,F-22多数性能指标仍是绝大多数新型战斗机无法实现的。今年最新出现的苏-35BM在雷达和机动性能上可以勉强和F-22一拼,欧洲战斗机“台风”和“阵风”在更换相控阵雷达后在作战系统方面可以接近F-22的水准(但仍需数年才能实现),但这些飞机在其他性能方面或多或少都存在严重代差,尤其在F-22最值得称谓的隐身能力和超音速巡航能力。 F-22的隐身性能,足够将苏-27等三代战机的雷达探测距离降低到10~20千米的夸张程度,可以抵销三代机和三代半机的大半战力。由于目前多数战斗机仍不具备真正的隐身能力,因此暂时没有将这个指标列入排行榜,若增添这个指标,“猛禽”的绝对优势才能更充分地体现出来。此外,F-22更加具有优势的是其未来发展的潜力,随着新型空空导弹和火控软硬件的不断升级,再加上机体侧面相控阵部件的加装,F-22的发展还将不断地推进。不过,造成F-22最大的缺陷也是其高性能导致的价格高昂,接近2亿美元的单机报价令美国人自己也望而却步。在2008年里,F-22在这方面的窘境略有一些起色,日本和以色列先后声称将不计价格采购F-22,而美国军方也不断提出增购F-22的要求。不过,美国当局仍未开放F-22的出口禁令,同时美国国会对空军增购F-22的要求仍不予采纳。 苏-35BM:排行第二,新出场的最强竞争者
苏-35BM有“简化版苏-35”的嫌疑,但却集中了俄罗斯所能提供的最强的设备和武器。其中最关键的两项就是雷达和发动机。 2008年2月18日,俄罗斯第一架生产型苏-35BM原型机成功完成试飞。两天之后,时任总统的普京与第一副总理梅德韦杰夫就亲自观看了正在进行性能试验的苏-35BM,俄罗斯政府对这款战机的重视程度由此可见。新问世的苏-35BM与已经亮相多年的苏-35初期型并不相同。最初的苏-35源自苏-27M,一种机体重新进行优化设计的苏-27升级型。虽然苏-27M/苏-35的设计更加优越,但由于资金有限,俄罗斯方面选择了基于苏-27普通型的苏-35BM,可以更多地借用苏-27的机体和零件。尽管苏-35BM有“简化版苏-35”的嫌疑,但却集中了俄罗斯所能提供的最强的设备和武器。其中最关键的两项就是雷达和发动机。苏-35BM采用了威力强大的“雪豹”有源相控阵雷达,据称可探测400公里远的飞行目标,以及200公里远的地面目标,能同时跟踪其中24个飞行目标,并引导导弹同时攻击其中8个。与此相比,F-22的相控阵雷达探测范围大概在300公里左右,而F-35的探测范围更近。苏-35BM配备两台AL-37F矢量推力发动机,俄罗斯方面认为美军的F-22的矢量推力发动机不如AL-37F先进,因此机动性上苏-35BM将更胜一筹。此外,苏-35最大航程可达5000公里左右。另有报道称,苏-35BM已经初步具备了超音速巡航能力。不过,苏-35BM采用的是早期型苏-27的机体,能否充分发挥优秀发动机的高性能仍是疑问。苏-35BM继承了苏-27系列的大型机体,多用途作战潜力很大,最大外挂武器可达8吨,能够携带14枚各型空空导弹。而F-22一般只能携带6枚AIM-120和2枚AIM-9近距离空空导弹。苏-35BM的电子系统虽然不如F-22先进,但凭借“雪豹”相控阵雷达超强的探测能力,再加上最新问世的超远程空空导弹,完全可以对F-22形成不对称的优势。目前F-22相对于苏-35BM,唯一的优势就是隐身性能,这也是苏-35BM最大的一个缺陷。苏-35BM毕竟是基于苏-27机体开发的改进型战机,隐身设计和机体结构等无法和真正的第四代战机相比。俄罗斯现在已将苏-35BM作为出口战斗机的主打产品,珠海航展上俄方展出的唯一战机模型就是苏-35BM。俄罗斯计划重点向中国、印度等国推销。苏-35BM尚未开始批量生产,能否顺利打入国际市场还要看未来几年的表现。不过,苏-27/苏-30系列长期保持了优秀的出口成绩,作为升级版的苏-35BM前景较为乐观。 “台风”排行第三:后劲不足排名逐渐不保
尽管遭到F-15和“阵风”、“鹰狮NG”的挑战,“台风”仍是西方除了F-22外最先进的战斗机。目前,德国、西班牙、意大利、英国和奥地利已先后装备“台风”战斗机,而沙特阿拉伯在2008年里已确定将以8000万美元的单价将装备这款战机。去年5月,改装CAESAR有源相控阵(AESA)雷达的“台风”战斗机成功首飞,这种雷达由英、德、意联合研制,采用大量T/R模块取代了机械扫描的天线和大功率的发射机,实现了对雷达波束扫描的电子控制。但目前生产型的“台风”仍采用ECR-90“捕手”脉冲多普勒雷达,在和美国战机的性能对比上相对吃亏。现役“台风”战机正式装备相控阵雷达的进度最早也要在2010年左右才能实现,而今年大规模的金融危机对英法等国已造成严重影响,未来航母的建造计划已被主动拖后,“台风”升级的计划很可能遭到波及。现役的“台风”战斗机虽然未采用矢量推力技术,但凭借优异的机体设计和先进的飞行控制计算机,再加上罗·罗EJ200发动机的强劲动力,“台风”获得了不亚于美俄最先进战机的超机动性能。 “台风”目前在各个服役国家内逐步形成战斗力,先后实现了发射ASRAAM、IRIS-T和AIM-9L等先进空空导弹的能力。目前,“台风”仍在使用美制AIM-120 AMRAAM先进中距空空导弹。英国、法国、瑞典、意大利、德国和西班牙6国联合研制的“流星”中距空空导弹正在紧张的试验中,很快就可以装备部队。“流星”导弹从性能上看,已经超越过目前所有空空导弹,届时将装备“台风”、“阵风”、“鹰狮”战机,成为欧洲战斗机的最强利器。不过有分析指出,“台风”战机现有的ECR-90“捕手”雷达性能有限,无法充分发挥“流星”导弹的全部优势,因此欧洲各国均期盼相控阵雷达(AESA)在“台风”上的应用,然而美好预期已被当前悲观的经济形势所拖累。今年,“台风”战机并未在出口市场上获得新的业绩。但BAE系统公司凭借去年底和沙特阿拉伯签订的出售72架协议,足以令“台风”的外销生产持续相当长时间。不过随着世界经济形势的衰退,价格昂贵的“台风”市场已经很难令市场接受。而且,经济困难也迟滞了“台风”下一阶段改进,其原有的性能优势逐步被新竞争者抵消,这款优秀战机的未来前景很不乐观。目前“台风”最大的缺点是缺少隐身性能和相控阵雷达,后者可以通过升级改进,但前者却是先天的不足,加上昂贵的价格仅次于F-22。随着性能较强的F-35、苏-35BM以及性价比很高的“鹰狮NG”的出现,“台风”战机不仅市场地位,连性能排名也将被超过。 F-15K排行第四:先进攻击鹰
F-15系列以APG-63(V)3有源相控阵(AESA)雷达作为改进工作的核心。其中,美国空军计划改装224架F-15E和207架F-15C。 麦道公司(现已并入波音)研制的F-15“鹰”式重型战斗机是第三代喷气战斗机的典型代表,自1970年代问世以来,一直是美国夺取空中优势的主力战机。F-15虽然已经服役30多年,但最新的改进型F-15K和F-15SG的机体设计和作战系统已获全面更新,在性能上已经达到了三代半的水准,甚至在整体性能上还要优于“阵风”等最新型战机。去年年底,F-15曾经遭遇大规模停飞的风波,并且先后反复数次,几乎造成美国空防系统的空白,美国本土的防空任务不得不由F-16独自承担。不过在2008年里,停飞风波的负面影响逐步淡化,目前F-15正在积极进行改进工作,以巩固其长久以来的性能优势地位。目前,F-15系列以APG-63(V)3有源相控阵(AESA)雷达作为改进工作的核心。其中,美国空军计划改装224架F-15E和207架F-15C。此外,波音公司还正在酝酿升级版的F-15E+,就是以出口型F-15SG和F-15K的机体为基础,配装接近F-22A水平的雷达和装备,以解决F-22A价格昂贵造成的战力不足。论到出口型的F-15,为新加坡制造的F-15SG和为韩国制造的F-15K比美军现役的F-15更加先进。这两款战机机身几乎全部重新设计,机体结构更加优化,挂点增加到15个之多,而且发动机推力更大。F-15K/SG均可挂载AlM-120C、AIM-9X、SLAM-ER、JDAM等几乎全部美军新型武器。最重要的是,F-15K/SG可配备APG-63(V)3有源相控阵雷达,一问世就成为东亚和东南亚地区最先进的战斗机。其中,F-15SG在作战系统方面比F-15K更加全面和先进,并于2008年11月首次公开亮相,但正式服役仍需两三年。因此,已在韩国空军内服役的F-15K当属目前最先进的F-15。与俄罗斯为了赚取外汇将苏-27系列战机大量推销出口不同,由于种种原因,除美国外装备F-15战机的西方盟国不多。21世纪前只有以色列(约100架)、日本(约200架)和沙特(约100架)装备,进入21世纪后,只有韩国(40架)和新加坡(12架)成为新用户。因此,F-15系列的市场评价只能算中上等。 F/A-18E/F排行第五:“超级大黄蜂”
F/A-18E/F雷达正逐步升级为AN/APG-79 AESA相控阵雷达。不仅极大提高了对目标的探测距离和探测精度,可靠性和维护性也得到了根本的改善 美国至今仍在生产并装备本国的战斗机,除了F-22在洛·马公司低速生产外似乎只有波音在制造F/A-18E/F“超级大黄蜂”。F-14已经完全退役,F-15和F-16则只用于满足出口订单。在2008年里,F/A-18E/F战斗机并没有太大变化,但其改进型EA-18G“咆哮者”电子战机却异军突起。该机作为美国海军新一代的电子战机,用于取代EA-6G的地位。但美国空军在这个时候却由于老式电子战机的退役,新飞机却后继无人,已经考虑订购EA-18G作为其装备。这可能将是美国空军自F-4“鬼怪”战斗机后,数十年来首次借用海军型号的飞机。自F-14退役后,F/A-18E/F填补了美军航母舰载机的主力位置。机体重新进行放大设计后,F/A-18E/F型比C/D型具备了更强的战力拓展空间,航程和载弹量有了较大增加,并提高了隐身性能。不过按照第四代战斗机的标准来看,F/A-18E/F改进的步伐并不大,尤其是机动性能几乎没有多少改善,属于典型的过渡机种。相对于F-22、F-35乃至“台风”、“阵风”,“超级大黄蜂”的机动性、隐身能力、雷达设备、武器配置都没有突出优点。随着包括米格-29、苏-27在内都开始强化多用途性能,该型机一贯推崇的“多用途”优势也越来越小。但“超级大黄蜂”机体的可扩展潜力,令其拥有更强的作战灵活性,可满足不同用途的作战需要,这也算是没有特点的一种特点。EA-16G的成功,就是这种性能拓展优势的充分体现。近两年,F/A-18E/F雷达正逐步升级为AN/APG-79 AESA相控阵雷达。不仅极大提高了“超级大黄蜂”对目标的探测距离和探测精度(据称空对空探测距离可增大两倍),可靠性和维护性也得到了根本的改善。另外,AESA雷达对地模式的成像技术加上精确的GPS辅助惯性导航系统,使该机的对地精确攻击能力将得到进一步增强。 “超级大黄蜂”在国际市场上也颇受关注,尽管F/A-18E/F价格并不便宜,但相对于昂贵的“猛禽”和“台风”,该机已经算是“物美价廉”。目前澳大利亚已订购了24架F/A-18E/F,在马来西亚、印度、丹麦等国新型战机选型上也频频出现这款战机的身影。不过,“超级大黄蜂”参与竞标的机会虽多,但有斩获的事情却很少,荷兰甚至已经公开拒绝选择这款战机。 法国“阵风”排行第6:
“阵风”是新一代战机中罕见的能同时装备空军和航母的战机,目前在法国空军内正逐步从早期的F1、F2型标准升级为完全多功能型的F3型标准 2008年里,“阵风”战机的动作十分积极,不仅F3型“阵风”在今年正式投产,而且在出口市场上也开始主动出击。不过,金融危机的影响使“阵风”的生产进度和升级进度都受到负面影响。 “阵风”是新一代战机中罕见的能同时装备空军和航母的战机,目前在法国空军内正逐步从早期的F1、F2型标准升级为完全多功能型的F3型标准。今年7月,法国空军已经批准了F3型投产,首架飞机计划在2009年初交付。与正在生产和装备的F2型“阵风”相比,F3型进一步增加或增强了对海攻击、侦察和核攻击能力,在执行这三种任务时,该机将分别采用欧洲导弹公司的“飞鱼”AM39 Block2 Mod2空舰导弹、泰利斯公司的新一代侦察吊舱和MBDA公司的ASMP-A防区外超音速空地导弹(可配核弹头),此外还将换装泰莱斯公司的“达摩克利兹”(Damocles)瞄准吊舱。不过,在首架F3标准型“阵风”交付时,这些武器或吊舱并不一定能按时投入使用。即使是“阵风”F3型标准,目前装备的仍是RBE2型无源相控阵雷达,该雷达虽然具有优异的低空地形跟随能力和多目标跟踪能力,但性能与有源相控阵还有一定距离。泰利斯公司已经开始对主动电扫描阵列AESA RBE2型雷达进行低速率初期生产,并预计在2010年交付,用在“阵风”战斗机上。届时,“阵风”将有望在性能上领先“台风”战机五年左右。 “阵风”改进方向除了雷达之外还有发动机。目前,“阵风”配备的发动机为M88-2型,推重比为8.5,F3型将改进为M88-3型,推重比将达到9.5。不过同样由于经济危机的缘故,包括升级雷达和换装新发动机,这些需要投入大笔资金的国防项目很可能也遭到推后。 “阵风”的机体拥有较强的潜力,空军型拥有14个外挂点,外挂能力达9吨以上,再加上先进的电子设备和强大的推力,整体作战能力大大优于西方以往的三代战机。客观讲,“阵风”确实是一款能力全面、性能比较均衡的中型战斗机,即能空中格斗,又能对地攻击,还能作为航母舰载机,甚至可以投掷核弹(F3型)。在新一代战斗机中,估计只有未服役的F-35有这种“全能”水准。在出口方面,“阵风”战机在利比亚首次打开市场后,又不断传来积极的信息,阿联酋也有意购买这款战机。此外,法国总统萨科奇在对外访问期间,不断向其他国家推销“阵风”,甚至允诺让巴西许可生产。不过,“阵风”在最大飞行速度和作战半径方面有较大劣势,这也是先后在新加坡和韩国输给F-15的主要原因 俄罗斯米格-31SM排行第7:进入新世纪的高空高速机
俄罗斯为米格-31SM研制了射程超过200千米的R-37远程空空导弹,这一点连只装备中距空空导弹F-22也无法匹敌 2008年,俄罗斯正式向米格-31颁发出口许可,从而令其有望在中东等热点区域再度展现“高空高速导弹发射飞机”的风采。此前,作为俄罗斯国内最强的远程截击机,米格-31一直未被列入出口产品的名单上。米格-31是最先装备相控阵雷达的战斗机,早在80年代就将无源相控阵技术应用到战斗机上。近年来,俄罗斯又对现有的米格-31升级为米格-31SM,改装了“屏蔽-M”型有源相控阵雷达。米格-31的雷达天线直径多达1100毫米(F-22A为1000毫米),其探测距离是其他战斗机无法比拟的,据称对战斗机的探测距离可达350-400千米。同时,米格-31SM装备了新型综合防御系统、新型数字式通信设备和卫星导航系统。新的大型多功能彩色显示屏代替了座舱仪表,能同时显示导航、地形图、与飞行状态控制等各种信息,使这款较陈旧的战机实现了“玻璃化座舱”。另外,俄罗斯为米格-31SM研制了射程超过200千米的R-37远程空空导弹,这一点连只装备中距空空导弹F-22也无法匹敌。另外,米格-31SM还加强了薄弱的对地攻击能力,可使用多种精确制导武器。因此,米格-31的电子设备和武器评分几乎都可以达到最高分值。但是,米格-31的机动性能却无法和新一代战机进行量化对比。该机具备少有的高空高速能力,爬升率也十分强劲,但近距空战性能就有所欠缺,可能大大不如多数三代战机。但米格-31原本就不是为近距离空战设计的,该机独特的超视距空战优势完全可以和第四代战斗机一较高低。其武器配备也是普通战机难以企及的。米格-31SM的出口型为米格-31E,随着出口许可的通过,该机有望首次出口叙利亚,这一点令美国和以色列十分关注。 美国F-16E/F“隼”排行第8
F-16的庞大产量在三代战机中是少有的:早期的A、B型,改进的C、D型以及包括E/F型在内的各种出口型 2008年里,F-16在出口市场上继续夺关斩将。今年,美国正式向巴基斯坦交付第一批F-16C/D战斗机,从而结束了这款战斗机对巴基斯坦的禁运历史。此外,美国又向摩洛哥出口24架F-16 BLOCK52。不过,F-16的负面新闻也接连不断。向以色列出售的最新型F-16I,在今年初被发现座舱内散发出致癌物甲醛,因此遭到临时停飞。 F-16的庞大产量在三代战机中是少有的:早期的A、B型,改进的C、D型以及包括E/F型在内的各种出口型,生产数量在2008年已经超过4400架的数字。F-16虽然是70年代作为低档战斗机设计的:突出机动性,忽略超视距作战能力。但随着技术的进步,F-16原来的弱项却变成了强项,并且更加突出多用途作战能力。目前,F-16的生产线主要用于满足对外出口,其中主要为Block 50/52批次和Block 60/62批次,美国空军已经停止采购新的F-16。以出口阿联酋的F-16E/F(Block 60/62)为例,发动机、航空电子设备和武器装备都有了很大改进。从外型上看,Block 60/62翼根上方翼身连接处左右各增加一个不能空中投放的“保形油箱”,最大作战半径有了显著提高。更重要的是,新型的Block 60/62装备了AN/APG-80有源相控阵雷达,性能和F-35配备的AN/APG-81不相上下。从整体作战性能上看,F-16 Block 60/62已经具备了四代战斗机的部分性能,甚至在部分指标上超过了“台风”和“阵风”。作为一款低档战斗机,这种发展水平不得不令人刮目相看。 F-16 Block 50/52以及Block 60/62虽然已经实现了不俗的出口成绩,但洛克希德·马丁公司还在利用最新技术继续发展F-16系列。F-16E/F目前配备APG-80相控阵雷达,洛·马还计划研发一种更先进的AESA雷达以装备F-16改进型。此外洛·马针对印度最新战斗机选型,专门推出了F-16IN型,该型号不仅配备了有源相控阵雷达,还装备了更先进的动力系统,宣称具备了“超音速巡航能力”,因此该型号已被称为最先进的F-16。目前,F-16依然能够接连不断地拿下大笔出口订单,再加上退役的F-16充斥二手战机市场,高端低端两面夹击,F-16几乎成为各国战斗机对外出口必须面对的“头号敌人”。 中国歼-10A“猛龙”排行第9
歼-10是介于法国“阵风”和瑞典“鹰狮”之间的中型战斗机,凭借鸭翼布局的设计,机动性和欧洲“三代半”战斗机不相上下. 2008年11月的珠海航展上,中国神秘的歼-10战斗机首次在普通民众面前亮相,并进行了精彩的飞行表演,充分展现了出色的机动性能。歼-10诸多性能仍没能公开,但作为一款比较典型的第三代战机,通过横向对比也可进行粗略的排名。总体来讲,歼-10是介于法国“阵风”和瑞典“鹰狮”之间的中型战斗机,凭借鸭翼布局的设计,机动性和欧洲“三代半”战斗机不相上下。另外歼-10装备了中国最新研制的机载设备,量产型号装备了和三代机后期型水平相当的脉冲多普勒雷达。在与苏-27系列的多次对抗中,歼-10凭借更先进的作战系统轻松取胜。目前并没有证据证明歼-10装备了相控阵雷达,因此在电子设备上不太可能赶上国外的最新改型战机,例如F-16E/F和F-15K等。不过,歼-10的武器配置基本是公开的,新型国产中距空空导弹已经正式服役,并且性能据称已超越AIM-120C的水准。但歼-10的缺点就是机体相对较小,载弹量和挂架数量比“台风”、“阵风”少,因此武器评分只能算在中等水准。此外,歼-10的潜力由于其全新机体可以得到不少分值,但未来升级所配置的发动机仍有悬念,如果能够进一步改进动力系统或像“超级大黄蜂”一样重新设计机体,则会大大提高其机体潜力。总的来说,能进入排行榜的战斗机最差也是“三代半”水平,歼-10作为中国独立研制的产品能达到上述水平已非常值得称道。在出口市场方面,巴基斯坦已经公开承认将装备歼-10战斗机,其他国家也有传闻对歼-10感兴趣。不过,出口型歼-10的发动机和雷达等设备将采用何种配置,则是业界比较关注的内容。 瑞典JAS-39C“鹰狮”排行第10
“鹰狮 NG”今年刚刚推出,在性能方面就展现出一流的水准,这也证明了“鹰狮”系列的巨大潜力 2008年,JAS-39“鹰狮”的改进型号“鹰狮 NG”闯入公众的视线。配备相控阵雷达的“鹰狮 NG”,凭借其出色的性价比,成为当前最具威胁的“黑马”。尽管评价不错,但“鹰狮 NG”的市场表现却和“鹰狮”普通型同样太好,尽管萨伯公司提出了工业合作等优惠条件,作为最重要目标客户的挪威在今年却拒绝了“鹰狮 NG”。 JAS-39“鹰狮”是瑞典萨伯公司研制的单座轻型战斗机。该机在“三代半”战斗机里,一直被誉为具有最佳的效费比。瑞典人充分利用了“拿来主义”,发动机是美国产品,辅助发动机是英国产品,机关炮是德、法产品,火控系统是自家的。“鹰狮”可以挂载西方多数航空武器,未来还可挂载新型的FMRAAM、“流星”先进中距空空导弹。 JAS-39“鹰狮”目前已基本完成第三批生产型的改进任务。改进后的JAS-39C/D采用了新型信号数据处理计算机和全权限数字式发动机控制系统。目前“鹰狮”采用了埃利克森·费伦第公司的PS-05/A多功能脉冲多普勤雷达。在本国爱立信集团的强大支持下,瑞典“鹰狮”的电子设备不可小视。PS05/A多功能X频段脉冲多普勒雷达基本可以满足当前的作战需求。另一方面,CDL39通讯和数据链系统所具备的数据高速传输、共享和处理能力,使“鹰狮”在编队作战时具备了可怕的战力。今年,瑞典隆重推出了最新改进型“鹰狮NG”,该机改装了和“台风”同型的CAESAR有源相控阵雷达,并且配备了专门为其开发的新型头盔瞄准,再加上更先进的作战系统,瑞典希望该机能够抢占未来战斗机市场的更多份额。虽然号称性价比很高,但“鹰狮”的出口成绩并不太理想,并没能实现类似F-16的市场辉煌。目前仅南非空军订购了28架,泰国订购了12架,匈牙利和捷克则以租借方式各装备了14架“鹰狮”战机。目前,“鹰狮”正参与多个国家的新型战机竞标,其中包括印度、克罗地亚、保加利亚、罗马尼亚、丹麦、巴西、荷兰和瑞士等
Ⅹ 瑞典斯德哥尔摩级导弹艇的装备如何
瑞典海军80年代建造的新型导弹艇,其主要使命是沿海巡逻,战术指导和布雷、反潜等。
该级艇长50米,满载排水量335吨,最大航速32节,艇员40人。
主要武器:4座双联装RBS-15舰对舰导弹发射装置,2座鱼雷发射管,1座57毫米炮和1座40毫米炮。
装备
瑞典海军新型导弹攻击艇“角宿一星Ⅲ”级导弹艇,又称为“斯德哥尔摩”级导弹艇。自1982年起共建造8艘,后6艘为RBB一40型,性能比前2艘先进。
与前两型“角宿一星”级艇相比,新艇的尺度更大,作战威力更强,具有较强的对空攻击和反潜能力。而且能布雷。
“斯德哥尔摩”级艇专门设计用于波罗的海巡逻、战术指挥和布雷、反潜等。
该级艇长50米,宽7.5米,吃水2米,标准排水量310吨,航速32节(燃气轮机)和20节(柴油机),人员编制30人。
该级艇采用钢质艇体、铝合金上层建筑。艇体分成9个水密隔舱,由于选用了柴一燃联合推进系统,比全柴油机推进的同级艇约短4米,轻20吨。
推进装置采用2台MTUI6V396TB93型柴油机,功率3089千瓦和一台阿里森570型燃气轮机,功率4412千瓦。每台发动机通过2F减速齿轮箱和8KF联轴节驱动一个调距桨。主机由全自动控制系统控制。
武器主要有6座RBI5舰对舰导弹箱式发射装置,2座533毫米鱼雷发射管,可发射TP613线导鱼雷或42型鱼雷。艇首装1门57毫米炮;尾部装1门40毫米“博福斯”自动炮。主甲板左舷水雷导轨上可携带深水炸弹。
电子设备有1部“海长劲鹿”警戒雷达,1套PEAB9LV200型射击指挥系统,1部轻型变深声纳。此外,还装有先进的全自动EwS905型电子对抗设备和干扰火箭发射装置。
改装
2000年1-2月考库姆海军系统公司与瑞典国防材料管理局(FMV)签订价值3210万美元合同,为瑞典海军的2艘“斯德哥尔摩”级导弹艇改装推进系统和指控系统。
这两艘艇为“马尔摩”号和“斯德哥尔摩”号。它们还将换装新的探测器,结构也要进行改造以减小雷达截面。
据瑞典国防材料管理局说,该两艘艇选用的大部分改装设备与“维斯比”级新一代隐身护卫舰的相同,如换装的推进系统为“维斯比”级安装的新的联合信号公司生产的TF50A燃气轮机,换掉了阿利森570-KF燃气轮机,现用的MTU396TB93柴油机也将换成2台新的MTU396TB94发动机。C2指控系统将采用高自动化的9LVMk3ECETRIS作战管理系统,该套系统为摄尔修斯技术公司研制的最新的实时战术作战管理系统,“维斯比”级舰也将装备该套系统。还要装备与“维斯比”级相同的由康多系统公司提供的CS-3701战术微波监视系统。“马尔摩”号和“斯德哥尔摩”号还将安装挪威海洋自动公司生产的HITEC综合舰桥控制系统。
该2艘艇的排水量为335吨,分别于1985年2月和5月开始服役,1994年均装备了RBS15反舰导弹。此次改装还计划安装2具533毫米、4具400毫米的鱼雷管和萨伯公司的“埃尔玛”LLS-920反潜炸弹。
卡尔斯克鲁纳船厂承接此项改装工程,改装艇重新服役时间于2002年2月和8月。